ﻻ يوجد ملخص باللغة العربية
In addition to the well known chiral anomaly, Dirac semimetals have been argued to exhibit mirror anomaly, close analogue to the parity anomaly of ($2+1$)-dimensional massive Dirac fermions. The observable response of such anomaly is manifested in a singular step-like anomalous Hall response across the mirror-symmetric plane in the presence of a magnetic field. Although this result seems to be valid in type-II Dirac semimetals (strictly speaking, in the linearized theory), we find that type-I Dirac semimetals do not possess such an anomaly in anomalous Hall response even at the level of the linearized theory. In particular, we show that the anomalous Hall response continuously approaches zero as one approaches the mirror symmetric angle in a type-I Dirac semimetal as opposed to the singular Hall response in a type-II Dirac semimetal. Moreover, we show that, under certain condition, the anomalous Hall response may vanish in a linearized type-I Dirac semimetal, even in the presence of time reversal symmetry breaking.
We theoretically investigate the optical activity of three dimensional Dirac semimetals (DSMs) using circular dichroism (CD). We show that DSMs in the presence of a magnetic field in any one of the mirror-symmetric planes of the materials exhibit a n
We propose an unconventional type of Hall effect in a topological Dirac semimetal with ferromagnetic electrodes. The topological Dirac semimetal itself has time-reversal symmetry, whereas attached ferromagnetic electrodes break it, causing the large
After the experimental realization, the Berry curvature dipole (BCD) induced nonlinear Hall effect (NLHE) has attracted tremendous interest to the condensed matter community. Here, we investigate another family of Hall effect, namely, chiral anomaly
Existing investigations of the anomalous Hall effect i.e. a current flowing transverse to the electric field in the absence of an external magnetic field) are concerned with the transport current. However, for many applications one needs to know the
We propose a mechanism to generate a static magnetization via {em axial magnetoelectric effect} (AMEE). Magnetization ${bf M} sim {bf E}_5(omega)times {bf E}_5^{*}(omega)$ appears as a result of the transfer of the angular momentum of the axial elect