ﻻ يوجد ملخص باللغة العربية
Let $(E,V)$ be a general generated coherent system of type $(n,d,n+m)$ on a general non-singular irreducible complex projective curve. A conjecture of D. C. Butler relates the semistability of $E$ to the semistability of the kernel of the evaluation map $Votimes mathcal{O}_Xto E$. The aim of this paper is to obtain results on the existence of generated coherent systems and use them to prove Butlers Conjecture in some cases. The strongest results are obtained for type $(2,d,4)$, which is the first previously unknown case.
Motivated by a hat guessing problem proposed by Iwasawa cite{Iwasawa10}, Butler and Graham cite{Butler11} made the following conjecture on the existence of certain way of marking the {em coordinate lines} in $[k]^n$: there exists a way to mark one po
After recalling the various tautological algebras of the moduli space of curves and some of its partial compactifications and stating several well-known results and conjectures concerning these algebras, we prove that the natural extension to the cas
In this paper, Gotzmanns Regularity Theorem is established for globally generated coherent sheaves on projective space. This is used to extend Gotzmanns explicit construction to the Quot scheme. The Gotzmann representation is applied to bound the sec
Let $X/C$ be a general product of elliptic curves. Our goal is to establish the Hodge-D-conjecture for $X$. We accomplish this when $dim X leq 5$. For $dim X geq 6$, we reduce the conjecture to a matrix rank condition that is amenable to computer calculation.
We show that if $X$ is a smooth complex projective variety with Kodaira dimension $0$ then the Kodaira dimension of a general fiber of its Albanese map is at most $h^0(Omega ^1 _X)$.