ترغب بنشر مسار تعليمي؟ اضغط هنا

On a Conjecture of Butler and Graham

433   0   0.0 ( 0 )
 نشر من قبل Xiaoming Sun
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by a hat guessing problem proposed by Iwasawa cite{Iwasawa10}, Butler and Graham cite{Butler11} made the following conjecture on the existence of certain way of marking the {em coordinate lines} in $[k]^n$: there exists a way to mark one point on each {em coordinate line} in $[k]^n$, so that every point in $[k]^n$ is marked exactly $a$ or $b$ times as long as the parameters $(a,b,n,k)$ satisfies that there are non-negative integers $s$ and $t$ such that $s+t = k^n$ and $as+bt = nk^{n-1}$. In this paper we prove this conjecture for any prime number $k$. Moreover, we prove the conjecture for the case when $a=0$ for general $k$.

قيم البحث

اقرأ أيضاً

We prove that for any $varepsilon>0$, for any large enough $t$, there is a graph $G$ that admits no $K_t$-minor but admits a $(frac32-varepsilon)t$-colouring that is frozen with respect to Kempe changes, i.e. any two colour classes induce a connected component. This disproves three conjectures of Las Vergnas and Meyniel from 1981.
Let $(E,V)$ be a general generated coherent system of type $(n,d,n+m)$ on a general non-singular irreducible complex projective curve. A conjecture of D. C. Butler relates the semistability of $E$ to the semistability of the kernel of the evaluation map $Votimes mathcal{O}_Xto E$. The aim of this paper is to obtain results on the existence of generated coherent systems and use them to prove Butlers Conjecture in some cases. The strongest results are obtained for type $(2,d,4)$, which is the first previously unknown case.
We prove a conjecture of Ohba which says that every graph $G$ on at most $2chi(G)+1$ vertices satisfies $chi_ell(G)=chi(G)$.
Tuza (1981) conjectured that the size $tau(G)$ of a minimum set of edges that intersects every triangle of a graph $G$ is at most twice the size $ u(G)$ of a maximum set of edge-disjoint triangles of $G$. In this paper we present three results regard ing Tuzas Conjecture. We verify it for graphs with treewidth at most $6$; we show that $tau(G)leq frac{3}{2}, u(G)$ for every planar triangulation $G$ different from $K_4$; and that $tau(G)leqfrac{9}{5}, u(G) + frac{1}{5}$ if $G$ is a maximal graph with treewidth 3. Our first result strengthens a result of Tuza, implying that $tau(G) leq 2, u(G)$ for every $K_8$-free chordal graph $G$.
We consider three graphs, $G_{7,3}$, $G_{7,4}$, and $G_{7,6}$, related to Kellers conjecture in dimension 7. The conjecture is false for this dimension if and only if at least one of the graphs contains a clique of size $2^7 = 128$. We present an aut omated method to solve this conjecture by encoding the existence of such a clique as a propositional formula. We apply satisfiability solving combined with symmetry-breaking techniques to determine that no such clique exists. This result implies that every unit cube tiling of $mathbb{R}^7$ contains a facesharing pair of cubes. Since a faceshare-free unit cube tiling of $mathbb{R}^8$ exists (which we also verify), this completely resolves Kellers conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا