ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-Supervised Learning via New Deep Network Inversion

74   0   0.0 ( 0 )
 نشر من قبل Randall Balestriero
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

We exploit a recently derived inversion scheme for arbitrary deep neural networks to develop a new semi-supervised learning framework that applies to a wide range of systems and problems. The approach outperforms current state-of-the-art methods on MNIST reaching $99.14%$ of test set accuracy while using $5$ labeled examples per class. Experiments with one-dimensional signals highlight the generality of the method. Importantly, our approach is simple, efficient, and requires no change in the deep network architecture.

قيم البحث

اقرأ أيضاً

Deep semi-supervised learning has been widely implemented in the real-world due to the rapid development of deep learning. Recently, attention has shifted to the approaches such as Mean-Teacher to penalize the inconsistency between two perturbed inpu t sets. Although these methods may achieve positive results, they ignore the relationship information between data instances. To solve this problem, we propose a novel method named Metric Learning by Similarity Network (MLSN), which aims to learn a distance metric adaptively on different domains. By co-training with the classification network, similarity network can learn more information about pairwise relationships and performs better on some empirical tasks than state-of-art methods.
The objective of active learning (AL) is to train classification models with less number of labeled instances by selecting only the most informative instances for labeling. The AL algorithms designed for other data types such as images and text do no t perform well on graph-structured data. Although a few heuristics-based AL algorithms have been proposed for graphs, a principled approach is lacking. In this paper, we propose MetAL, an AL approach that selects unlabeled instances that directly improve the future performance of a classification model. For a semi-supervised learning problem, we formulate the AL task as a bilevel optimization problem. Based on recent work in meta-learning, we use the meta-gradients to approximate the impact of retraining the model with any unlabeled instance on the model performance. Using multiple graph datasets belonging to different domains, we demonstrate that MetAL efficiently outperforms existing state-of-the-art AL algorithms.
80 - Zequn Wang , Mingyang Li 2020
Conventional uncertainty quantification methods usually lacks the capability of dealing with high-dimensional problems due to the curse of dimensionality. This paper presents a semi-supervised learning framework for dimension reduction and reliabilit y analysis. An autoencoder is first adopted for mapping the high-dimensional space into a low-dimensional latent space, which contains a distinguishable failure surface. Then a deep feedforward neural network (DFN) is utilized to learn the mapping relationship and reconstruct the latent space, while the Gaussian process (GP) modeling technique is used to build the surrogate model of the transformed limit state function. During the training process of the DFN, the discrepancy between the actual and reconstructed latent space is minimized through semi-supervised learning for ensuring the accuracy. Both labeled and unlabeled samples are utilized for defining the loss function of the DFN. Evolutionary algorithm is adopted to train the DFN, then the Monte Carlo simulation method is used for uncertainty quantification and reliability analysis based on the proposed framework. The effectiveness is demonstrated through a mathematical example.
The problem of developing binary classifiers from positive and unlabeled data is often encountered in machine learning. A common requirement in this setting is to approximate posterior probabilities of positive and negative classes for a previously u nseen data point. This problem can be decomposed into two steps: (i) the development of accurate predictors that discriminate between positive and unlabeled data, and (ii) the accurate estimation of the prior probabilities of positive and negative examples. In this work we primarily focus on the latter subproblem. We study nonparametric class prior estimation and formulate this problem as an estimation of mixing proportions in two-component mixture models, given a sample from one of the components and another sample from the mixture itself. We show that estimation of mixing proportions is generally ill-defined and propose a canonical form to obtain identifiability while maintaining the flexibility to model any distribution. We use insights from this theory to elucidate the optimization surface of the class priors and propose an algorithm for estimating them. To address the problems of high-dimensional density estimation, we provide practical transformations to low-dimensional spaces that preserve class priors. Finally, we demonstrate the efficacy of our method on univariate and multivariate data.
104 - Laurence Aitchison 2020
We currently lack a solid statistical understanding of semi-supervised learning methods, instead treating them as a collection of highly effective tricks. This precludes the principled combination e.g. of Bayesian methods and semi-supervised learning , as semi-supervised learning objectives are not currently formulated as likelihoods for an underlying generative model of the data. Here, we note that standard image benchmark datasets such as CIFAR-10 are carefully curated, and we provide a generative model describing the curation process. Under this generative model, several state-of-the-art semi-supervised learning techniques, including entropy minimization, pseudo-labelling and the FixMatch family emerge naturally as variational lower-bounds on the log-likelihood.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا