ﻻ يوجد ملخص باللغة العربية
A tomographic gas-density diagnostic using a single-beam Wollaston interferometer able to characterise non-symmetric density distributions in gas jets is presented. A real-time tomographic algorithm is able to reconstruct three dimensional density distributions. A Maximum Likelihood -- Expectation Maximisation algorithm, an iterative method with good convergence properties compared to simple back projection, is used. With the use of graphical processing units, real time computation and high resolution are achieved. Two different gas jets are characterised: a kHz, piezo-driven jet for lower densities and a solenoid valve based jet producing higher densities. While the first is planned for to be used in bunch length monitors at the free electron laser at Paul Scherrer Institut (PSI, SwissFEL), the second jet is planned to be used for laser wakefield acceleration experiments, exploring the linear regime. In this latter application, well-tailored and non-symmetric density distributions produced by a supersonic shock front generated by a razor blade inserted laterally to the gas flow, which breaks cylindrical symmetry, need to be characterized.
Transfer of polarized 3He gas across spatially varying magnetic fields will facilitate a new source of polarized 3He ions for particle accelerators. In this context, depolarization of atoms as they pass through regions of significant transverse field
Ultrafast electron diffraction (UED) is a powerful method for studying time-resolved structural changes. Currently, space charge induced temporal broadening prevents obtaining high brightness electron pulses with sub-100 fs durations limiting the ran
Shocks in supersonic flows offer both a high-density and sharp density gradients that can be used, for instance,for gradient injection in laser-plasma accelerators. We report on a parametric study of oblique shocks created by inserting a straight axi
Neutron interferometry enables precision measurements that are typically operated within elaborate, multi-layered facilities which provide substantial shielding from environmental noise. These facilities are necessary to maintain the coherence requir
The Jagiellonian-PET (J-PET) collaboration is developing a prototype TOF-PET detector based on long polymer scintillators. This novel approach exploits the excellent time properties of the plastic scintillators, which permit very precise time measure