ﻻ يوجد ملخص باللغة العربية
Ultrafast electron diffraction (UED) is a powerful method for studying time-resolved structural changes. Currently, space charge induced temporal broadening prevents obtaining high brightness electron pulses with sub-100 fs durations limiting the range of phenomena that can be studied with this technique. We review the state of the the art of UED in this respect and propose a practical design for reflectron based pulse compression which utilizes only electro-static optics and has a tunable temporal focal point. Our simulation shows that this scheme is capable of compressing an electron pulse containing 100,000 electrons with 60:1 temporal compression ratio.
Visualizing ultrafast dynamics at the atomic scale requires time-resolved pump-probe characterization with femtosecond temporal resolution. For single-shot ultrafast electron diffraction (UED) with fully relativistic electron bunch probes, existing t
Microwave cavities oscillating in the TM$_{110}$ mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material it becomes more compact and power efficient, facilitating the imple
We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained u
The all-optical synchronization systems used in various X-ray free-electron lasers (XFEL) such as the European XFEL observe the transient fields of passing electron bunches coupled into one or more pickups in the Bunch Arrival Time Monitors (BAM). Th
A vacuum autoresonance accelerator scheme for electrons, which employs terahertz radiation and currently available magnetic fields, is suggested. Based on numerical simulations, parameter values, which could make the scheme experimentally feasible, are identified and discussed.