ﻻ يوجد ملخص باللغة العربية
We have investigated the electronic states and spin polarization of half-metallic ferromagnet CrO$_2$ (100) epitaxial films by bulk-sensitive spin-resolved photoemission spectroscopy with a focus on non-quasiparticle (NQP) states derived from electron-magnon interactions. We found that the averaged values of the spin polarization are approximately 100% and 40% at 40 K and 300 K, respectively. This is consistent with the previously reported result [H. Fujiwara et al., Appl. Phys. Lett. 106, 202404 (2015).]. At 100 K, peculiar spin depolarization was observed at the Fermi level ($E_{F}$), which is supported by theoretical calculations predicting NQP states. This suggests the possible appearance of NQP states in CrO$_2$. We also compare the temperature dependence of our spin polarizations with that of the magnetization.
Using high-resolution spin-resolved photoemission spectroscopy, we observed a thermal spin depolarization to which all spin-polarized electrons contribute. Furthermore we observed a distinct minority spin state near the Fermi level and a correspondin
We present electronic structure calculations in combination with local and non-local many-body correlation effects for the half-metallic ferromagnet CrO$_2$. Finite-temperature Dynamical Mean Field Theory results show the existence of non-quasipartic
We have performed bulk-sensitive spin-resolved photoemission spectroscopy in order to clarify the intrinsic spin-resolved electronic states of half-metallic ferromagnet CrO2. We used CrO2 epitaxial films on TiO2(100), which shows a peak at 1 eV with
We report the observation of spin-glass-like behavior and strong magnetic anisotropy in extremely smooth (~1-3 AA) roughness) epitaxial (110) and (010) SrRuO3 thin films. The easy axis of magnetization is always perpendicular to the plane of the film
Chromium dioxide CrO$_2$ belongs to a class of materials called ferromagnetic half-metals, whose peculiar aspect is to act as a metal in one spin orientation and as semiconductor or insulator in the opposite one. Despite numerous experimental and the