ﻻ يوجد ملخص باللغة العربية
We have performed bulk-sensitive spin-resolved photoemission spectroscopy in order to clarify the intrinsic spin-resolved electronic states of half-metallic ferromagnet CrO2. We used CrO2 epitaxial films on TiO2(100), which shows a peak at 1 eV with a clear Fermi edge, consistent with the bulk-sensitive PES spectrum for CrO2. In spin-resolved spectra at 40 K, while the Fermi edge was observed in the spin up (majority spin) state, no states at the Fermi level (EF) with an energy gap of 0.5 eV below EF was observed in the spin down (minority spin) state. At 300 K, the gap in the spin down state closes. These results are consistent with resistivity measurements and magnetic hysteresis curves of the fabricated CrO2 film, constituting spectroscopic evidence for the half-metallicity of CrO2 at low temperature and reducing the spin polarization at room temperature. We also discuss the electron correlation effects of Cr 3d.
Bulk-sensitive hard x-ray photoemission spectroscopy (HAXPES) reveals for as-grown epitaxial films of half-metallic ferromagnetic CrO2(100) a pronounced screening feature in the Cr 2p3/2 core level and an asymmetry in the O 1s core level. This gives
High resolution angle resolved photoemission measurements and band structure calculations are carried out to study the electronic structure of BaMnSb$_2$. All the observed bands are nearly linear that extend to a wide energy range. The measured Fermi
The electronic structure of $p$-type doped BiTe is studied by angle resolved photoemission spectroscopy (ARPES) to experimentally confirm the mechanism responsible for the high thermoelectric figure of merit. Our ARPES study shows that the band edges
Electronic structure of single crystalline Ba(Zn$_{0.875}$Mn$_{0.125}$)$_{2}$As$_{2}$, parent compound of the recently founded high-temperature ferromagnetic semiconductor, was studied by high-resolution photoemission spectroscopy (ARPES). Through sy
We have investigated the electronic states and spin polarization of half-metallic ferromagnet CrO$_2$ (100) epitaxial films by bulk-sensitive spin-resolved photoemission spectroscopy with a focus on non-quasiparticle (NQP) states derived from electro