ﻻ يوجد ملخص باللغة العربية
We explore a pure optical method for enantioselective orientation of chiral molecules by means of laser fields with twisted polarization. Several field implementations are considered, including a pair of delayed cross-polarized laser pulses, an optical centrifuge, and polarization shaped pulses. The underlying classical orientation mechanism common for all these fields is discussed, and its operation is demonstrated for a range of chiral molecules of various complexity: hydrogen thioperoxide (${rm HSOH}$), propylene oxide (${rm CH_{3}CHCH_{2}O}$) and ethyl oxirane (${rm CH_{3}CH_{2}CHCH_{2}O}$). The presented results demonstrate generality, versatility and robustness of this optical method for manipulating molecular enantiomers in the gas phase.
Molecular chirality is an omnipresent phenomenon of fundamental significance in physics, chemistry and biology. For this reason, search for novel techniques for enantioselective control, detection and separation of chiral molecules is of particular i
We study interaction of generic asymmetric molecules with a pair of strong time-delayed short laser pulses with crossed linear polarizations. We show that such an excitation not only provides unidirectional rotation of the most polarizable molecular
We report the first experimental observation of non-adiabatic field-free orientation of a heteronuclear diatomic molecule (CO) induced by an intense two-color (800 and 400 nm) femtosecond laser field. We monitor orientation by measuring fragment ion
We report on the first experimental demonstration of enantioselective rotational control of chiral molecules with a laser field. In our experiments, two enantiomers of propylene oxide are brought to accelerated unidirectional rotation by means of an
Alignment and orientation of molecules by intense, ultrashort laser fields are crucial for a variety of applications in physics and chemistry. These include control of high harmonics generation, molecular orbitals tomography, control of molecular pho