ﻻ يوجد ملخص باللغة العربية
We study interaction of generic asymmetric molecules with a pair of strong time-delayed short laser pulses with crossed linear polarizations. We show that such an excitation not only provides unidirectional rotation of the most polarizable molecular axis, but also induces a directed torque along this axis, which results in the transient orientation of the molecules. The asymmetric molecules are chiral in nature and different molecular enantiomers experience the orienting action in opposite directions causing out-of-phase oscillation of their dipole moments. The resulting microwave radiation was recently suggested to be used for analysis/discrimination of chiral molecular mixtures. We reveal the mechanism behind this laser induced orientation effect, show that it is classical in nature, and envision further applications of light with skewed polarization.
We explore a pure optical method for enantioselective orientation of chiral molecules by means of laser fields with twisted polarization. Several field implementations are considered, including a pair of delayed cross-polarized laser pulses, an optic
Molecular chirality is an omnipresent phenomenon of fundamental significance in physics, chemistry and biology. For this reason, search for novel techniques for enantioselective control, detection and separation of chiral molecules is of particular i
We report the first experimental observation of non-adiabatic field-free orientation of a heteronuclear diatomic molecule (CO) induced by an intense two-color (800 and 400 nm) femtosecond laser field. We monitor orientation by measuring fragment ion
Alignment and orientation of molecules by intense, ultrashort laser fields are crucial for a variety of applications in physics and chemistry. These include control of high harmonics generation, molecular orbitals tomography, control of molecular pho
The microscopic orientation and position of photoactive molecules is crucial to the operation of optoelectronic devices such as OLEDs and solar cells. Here, we introduce a shape-persistent macrocyclic molecule as an excellent fluorescent probe to sim