ترغب بنشر مسار تعليمي؟ اضغط هنا

Indistinguishability of quantum states and rotation counting

121   0   0.0 ( 0 )
 نشر من قبل Dmitri V. Averin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a quantum system in which the winding number of rotations of a particle around a ring can be monitored and emerges as a physical observable. We explicitly analyze the situation when, as a result of the monitoring of the winding number, the period of the orbital motion of the particle is extended to $n>1$ full rotations, which leads to changes in the energy spectrum and in all observable properties. In particular, we show that in this case, the usual magnetic flux period $Phi_0=h/q$ of the Aharonov-Bohm effect is reduced to $Phi_0/n$.



قيم البحث

اقرأ أيضاً

We investigate the ground state properties of a bosonic Harper-Hofstadter model with local interactions on a finite cylindrical lattice with filling fraction $ u=1/2$. We find that our system supports topologically ordered states by calculating the t opological entanglement entropy, and its value is in good agreement with the theoretical value for the $ u=1/2$ Laughlin state. By exploring the behaviour of the density profiles, edge currents and single-particle correlation functions, we find that the ground state on the cylinder shows all signatures of a fractional quantum Hall state even for large values of the magnetic flux density. Furthermore, we determine the dependence of the correlation functions and edge currents on the interaction strength. We find that depending on the magnetic flux density, the transition towards Laughlin-like behaviour can be either smooth or happens abruptly for some critical interaction strength.
Using the method of canonical group quantization, we construct the angular momentum operators associated to configuration spaces with the topology of (i) a sphere and (ii) a projective plane. In the first case, the obtained angular momentum operators are the quantum version of Poincares vector, i.e., the physically correct angular momentum operators for an electron coupled to the field of a magnetic monopole. In the second case, the obtained operators represent the angular momentum operators of a system of two indistinguishable spin zero quantum particles in three spatial dimensions. We explicitly show how our formalism relates to the one developed by Berry and Robbins. The relevance of the proposed formalism for an advance in our understanding of the spin-statistics connection in non-relativistic quantum mechanics is discussed.
The quest to realise strongly interacting photons remains an outstanding challenge both for fundamental science and for applications. Here, we explore mediated photon-photon interactions in a highly imbalanced two-component mixture of exciton-polarit ons in a semiconductor microcavity. Using a theory that takes into account non-perturbative correlations between the excitons as well as strong light-matter coupling, we demonstrate the high tunability of an effective interaction between quasiparticles formed by minority component polaritons interacting with a Bose-Einstein condensate (BEC) of a majority component polaritons. In particular, the interaction, which is mediated by the exchange of sound modes in the BEC can be made strong enough to support a bound state of two quasiparticles. Since these quasiparticles consist partly of photons, this in turn corresponds to a dimer state of photons propagating through the BEC. This gives rise to a new light transmission line where the bound state wave function is directly mapped onto correlations between outgoing photons. Our findings open up new routes for realising highly non-linear optical materials and novel hybrid light-matter quantum systems.
Quantum geometry has emerged as a central and ubiquitous concept in quantum sciences, with direct consequences on quantum metrology and many-body quantum physics. In this context, two fundamental geometric quantities play complementary roles: the Fub ini-Study metric, which introduces a notion of distance between quantum states defined over a parameter space, and the Berry curvature associated with Berry-phase effects and topological band structures. In fact, recent studies have revealed direct relations between these two important quantities, suggesting that topological properties can, in special cases, be deduced from the quantum metric. In this work, we establish general and exact relations between the quantum metric and the topological invariants of generic Dirac Hamiltonians. In particular, we demonstrate that topological indices (Chern numbers or winding numbers) are bounded by the quantum volume determined by the quantum metric. Our theoretical framework, which builds on the Clifford algebra of Dirac matrices, is applicable to topological insulators and semimetals of arbitrary spatial dimensions, with or without chiral symmetry. This work clarifies the role of the Fubini-Study metric in topological states of matter, suggesting unexplored topological responses and metrological applications in a broad class of quantum-engineered systems.
236 - Simon Lieu 2019
We introduce non-Hermitian generalizations of Majorana zero modes (MZMs) which appear in the topological phase of a weakly dissipative Kitaev chain coupled to a Markovian bath. Notably, the presence of MZMs ensures that the steady state in the absenc e of decoherence events is two-fold degenerate. Within a stochastic wavefunction approach, the effective Hamiltonian governing the coherent, non-unitary dynamics retains BDI classification of the closed limit, but belongs to one of four non-Hermitian flavors of the ten-fold way. We argue for the stability of MZMs due to a generalization of particle-hole symmetry, and uncover the resulting topological phase diagram. Qualitative features of our study generalize to two-dimensional chiral superconductors. The dissipative superconducting chain can be mapped to an Ising model in a complex transverse field, and we discuss potential signatures of the degeneracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا