ﻻ يوجد ملخص باللغة العربية
We propose a quantum system in which the winding number of rotations of a particle around a ring can be monitored and emerges as a physical observable. We explicitly analyze the situation when, as a result of the monitoring of the winding number, the period of the orbital motion of the particle is extended to $n>1$ full rotations, which leads to changes in the energy spectrum and in all observable properties. In particular, we show that in this case, the usual magnetic flux period $Phi_0=h/q$ of the Aharonov-Bohm effect is reduced to $Phi_0/n$.
We investigate the ground state properties of a bosonic Harper-Hofstadter model with local interactions on a finite cylindrical lattice with filling fraction $ u=1/2$. We find that our system supports topologically ordered states by calculating the t
Using the method of canonical group quantization, we construct the angular momentum operators associated to configuration spaces with the topology of (i) a sphere and (ii) a projective plane. In the first case, the obtained angular momentum operators
The quest to realise strongly interacting photons remains an outstanding challenge both for fundamental science and for applications. Here, we explore mediated photon-photon interactions in a highly imbalanced two-component mixture of exciton-polarit
Quantum geometry has emerged as a central and ubiquitous concept in quantum sciences, with direct consequences on quantum metrology and many-body quantum physics. In this context, two fundamental geometric quantities play complementary roles: the Fub
We introduce non-Hermitian generalizations of Majorana zero modes (MZMs) which appear in the topological phase of a weakly dissipative Kitaev chain coupled to a Markovian bath. Notably, the presence of MZMs ensures that the steady state in the absenc