ﻻ يوجد ملخص باللغة العربية
We investigate the ground state properties of a bosonic Harper-Hofstadter model with local interactions on a finite cylindrical lattice with filling fraction $ u=1/2$. We find that our system supports topologically ordered states by calculating the topological entanglement entropy, and its value is in good agreement with the theoretical value for the $ u=1/2$ Laughlin state. By exploring the behaviour of the density profiles, edge currents and single-particle correlation functions, we find that the ground state on the cylinder shows all signatures of a fractional quantum Hall state even for large values of the magnetic flux density. Furthermore, we determine the dependence of the correlation functions and edge currents on the interaction strength. We find that depending on the magnetic flux density, the transition towards Laughlin-like behaviour can be either smooth or happens abruptly for some critical interaction strength.
We employ the exact diagonalization method to analyze the possibility of generating strongly correlated states in two-dimensional clouds of ultracold bosonic atoms which are subjected to a geometric gauge field created by coupling two internal atomic
Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Na{i}vely, these helical domain walls (hDWs) constitute two counter-propag
We report the observation of a resonance in the microwave spectra of the real diagonal conductivities of a two-dimensional electron system within a range of ~ +- .0.015 $ from filling factor $ u=1/3$. The resonance is remarkably similar to resonances
We propose a quantum system in which the winding number of rotations of a particle around a ring can be monitored and emerges as a physical observable. We explicitly analyze the situation when, as a result of the monitoring of the winding number, the
Using the modular invariance of the torus, constraints on the 1D patterns are derived that are associated with various fractional quantum Hall ground states, e.g. through the thin torus limit. In the simplest case, these constraints enforce the well