ﻻ يوجد ملخص باللغة العربية
We consider the uncertainty bound on the sum of variances of two incompatible observables in order to derive a corresponding steering inequality. Our steering criterion when applied to discrete variables yields the optimum steering range for two qubit Werner states in the two measurement and two outcome scenario. We further employ the derived steering relation for several classes of continuous variable systems. We show that non-Gaussian entangled states such as the photon subtracted squeezed vacuum state and the two-dimensional harmonic oscillator state furnish greater violation of the sum steering relation compared to the Reid criterion as well as the entropic steering criterion. The sum steering inequality provides a tighter steering condition to reveal the steerability of continuous variable states.
Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not c
The Einstein-Podolsky-Rosen (EPR) paradox is one of the milestones in quantum foundations, arising from the lack of local realistic description of quantum mechanics. The EPR paradox has stimulated an important concept of quantum nonlocality, which ma
Protocols for testing or exploiting quantum correlations-such as entanglement, Bell nonlocality, and Einstein-Podolsky-Rosen steering- generally assume a common reference frame between two parties. Establishing such a frame is resource-intensive, and
In comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been explored via violations of steering inequalities b
Recently quantum nonlocality has been classified into three distinct types: quantum entanglement, Einstein-Podolsky-Rosen steering, and Bells nonlocality. Among which, Bells nonlocality is the strongest type. Bells nonlocality for quantum states is u