ﻻ يوجد ملخص باللغة العربية
Recently quantum nonlocality has been classified into three distinct types: quantum entanglement, Einstein-Podolsky-Rosen steering, and Bells nonlocality. Among which, Bells nonlocality is the strongest type. Bells nonlocality for quantum states is usually detected by violation of some Bells inequalities, such as Clause-Horne-Shimony-Holt inequality for two qubits. Steering is a manifestation of nonlocality intermediate between entanglement and Bells nonlocality. This peculiar feature has led to a curious quantum phenomenon, the one-way Einstein-Podolsky-Rosen steering. The one-way steering was an important open question presented in 2007, and positively answered in 2014 by Bowles emph{et al.}, who presented a simple class of one-way steerable states in a two-qubit system with at least thirteen projective measurements. The inspiring result for the first time theoretically confirms quantum nonlocality can be fundamentally asymmetric. Here, we propose another curious quantum phenomenon: Bell nonlocal states can be constructed from some steerable states. This novel finding not only offers a distinctive way to study Bells nonlocality without Bells inequality but with steering inequality, but also may avoid locality loophole in Bells tests and make Bells nonlocality easier for demonstration. Furthermore, a nine-setting steering inequality has also been presented for developing more efficient one-way steering and detecting some Bell nonlocal states.
Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not c
The Einstein-Podolsky-Rosen (EPR) paradox plays a fundamental role in our understanding of quantum mechanics, and is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the un
We consider the uncertainty bound on the sum of variances of two incompatible observables in order to derive a corresponding steering inequality. Our steering criterion when applied to discrete variables yields the optimum steering range for two qubi
The Einstein-Podolsky-Rosen (EPR) paradox is one of the milestones in quantum foundations, arising from the lack of local realistic description of quantum mechanics. The EPR paradox has stimulated an important concept of quantum nonlocality, which ma
Protocols for testing or exploiting quantum correlations-such as entanglement, Bell nonlocality, and Einstein-Podolsky-Rosen steering- generally assume a common reference frame between two parties. Establishing such a frame is resource-intensive, and