ﻻ يوجد ملخص باللغة العربية
We use Monte Carlo simulations to study the finite temperature behavior of vortices in the XY- model for tangent vector order on curved backgrounds. Contrary to naive expectations, we show that the underlying geometry does not affect the proliferation of vortices with temperature respect to what is observed on a flat surface. Long-range order in these systems is analyzed by using the classical two-point correlation functions. As expected, in the case of slightly curved substrates these correlations behave similarly to the plane. However, for high curvatures, the presence of geometry-induced unbounded vortices at low temperatures produces the rapid decay of correlations and an apparent lack of long-range order. Our results shed light on the finite-temperature physics of soft-matter systems and anisotropic magnets deposited on curved substrates.
We investigate the energetics of droplets sourced by the thermal fluctuations in a system undergoing a first-order transition. In particular, we confine our studies to two dimensions with explicit calulations in the plane and on the sphere. Using an
We present a systematic study of how vortices in superfluid films interact with the spatially varying Gaussian curvature of the underlying substrate. The Gaussian curvature acts as a source for a geometric potential that attracts (repels) vortices to
Comment on Liquids on Topologically Nanopatterned Surfaces by O. Gang et al, Phys. Rev. Lett. 95, 217801 (2005). See also an erratum published by O. Gang et al (Phys Rev Lett, to appear)
The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impingin
Recent studies have highlighted the sensitivity of active matter to boundaries and their geometries. Here we develop a general theory for the dynamics and statistics of active particles on curved surfaces and illustrate it on two examples. We first s