ﻻ يوجد ملخص باللغة العربية
Recent studies have highlighted the sensitivity of active matter to boundaries and their geometries. Here we develop a general theory for the dynamics and statistics of active particles on curved surfaces and illustrate it on two examples. We first show that active particles moving on a surface with no ability to probe its curvature only exhibit steady-state inhomogeneities in the presence of orientational order. We then consider a strongly confined 3D ideal active gas and compute its steady-state density distribution in a box of arbitrary convex shape.
Frictional forces affect the rheology of hard-sphere colloids, at high shear rate. Here we demonstrate, via numerical simulations, that they also affect the dynamics of active Brownian particles, and their motility induced phase separation. Frictiona
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, is espe
We present a systematic study of how vortices in superfluid films interact with the spatially varying Gaussian curvature of the underlying substrate. The Gaussian curvature acts as a source for a geometric potential that attracts (repels) vortices to
Phase separation in a low-density gas-like phase and a high-density liquid-like one is a common trait of biological and synthetic self-propelling particles systems. The competition between motility and stochastic forces is assumed to fix the boundary
Despite their fundamentally non-equilibrium nature, the individual and collective behavior of active systems with polar propulsion and isotropic interactions (polar-isotropic active systems) are remarkably well captured by equilibrium mapping techniq