ترغب بنشر مسار تعليمي؟ اضغط هنا

Post-selection estimation and testing following aggregated association tests

72   0   0.0 ( 0 )
 نشر من قبل Amit Meir
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The practice of pooling several individual test statistics to form aggregate tests is common in many statistical application where individual tests may be underpowered. While selection by aggregate tests can serve to increase power, the selection process invalidates the individual test-statistics, making it difficult to identify the ones that drive the signal in follow-up inference. Here, we develop a general approach for valid inference following selection by aggregate testing. We present novel powerful post-selection tests for the individual null hypotheses which are exact for the normal model and asymptotically justified otherwise. Our approach relies on the ability to characterize the distribution of the individual test statistics after conditioning on the event of selection. We provide efficient algorithms for estimation of the post-selection maximum-likelihood estimates and suggest confidence intervals which rely on a novel switching regime for good coverage guarantees. We validate our methods via comprehensive simulation studies and apply them to data from the Dallas Heart Study, demonstrating that single variant association discovery following selection by an aggregated test is indeed possible in practice.



قيم البحث

اقرأ أيضاً

94 - Ruth Heller , Yair Heller 2016
For testing two random vectors for independence, we consider testing whether the distance of one vector from a center point is independent from the distance of the other vector from a center point by a univariate test. In this paper we provide condit ions under which it is enough to have a consistent univariate test of independence on the distances to guarantee that the power to detect dependence between the random vectors increases to one, as the sample size increases. These conditions turn out to be minimal. If the univariate test is distribution-free, the multivariate test will also be distribution-free. If we consider multiple center points and aggregate the center-specific univariate tests, the power may be further improved, and the resulting multivariate test may be distribution-free for specific aggregation methods (if the univariate test is distribution-free). We show that several multivariate tests recently proposed in the literature can be viewed as instances of this general approach.
We propose a change-point detection method for large scale multiple testing problems with data having clustered signals. Unlike the classic change-point setup, the signals can vary in size within a cluster. The clustering structure on the signals ena bles us to effectively delineate the boundaries between signal and non-signal segments. New test statistics are proposed for observations from one and/or multiple realizations. Their asymptotic distributions are derived. We also study the associated variance estimation problem. We allow the variances to be heteroscedastic in the multiple realization case, which substantially expands the applicability of the proposed method. Simulation studies demonstrate that the proposed approach has a favorable performance. Our procedure is applied to {an array based Comparative Genomic Hybridization (aCGH)} dataset.
In this paper, we consider data consisting of multiple networks, each comprised of a different edge set on a common set of nodes. Many models have been proposed for the analysis of such multi-view network data under the assumption that the data views are closely related. In this paper, we provide tools for evaluating this assumption. In particular, we ask: given two networks that each follow a stochastic block model, is there an association between the latent community memberships of the nodes in the two networks? To answer this question, we extend the stochastic block model for a single network view to the two-view setting, and develop a new hypothesis test for the null hypothesis that the latent community memberships in the two data views are independent. We apply our test to protein-protein interaction data from the HINT database (Das and Hint, 2012). We find evidence of a weak association between the latent community memberships of proteins defined with respect to binary interaction data and the latent community memberships of proteins defined with respect to co-complex association data. We also extend this proposal to the setting of a network with node covariates.
We consider the problem of testing whether pairs of univariate random variables are associated. Few tests of independence exist that are consistent against all dependent alternatives and are distribution free. We propose novel tests that are consiste nt, distribution free, and have excellent power properties. The tests have simple form, and are surprisingly computationally efficient thanks to accompanying innovative algorithms we develop. Moreover, we show that one of the test statistics is a consistent estimator of the mutual information. We demonstrate the good power properties in simulations, and apply the tests to a microarray study where many pairs of genes are examined simultaneously for co-dependence.
132 - Amit Meir , Mathias Drton 2017
Applying standard statistical methods after model selection may yield inefficient estimators and hypothesis tests that fail to achieve nominal type-I error rates. The main issue is the fact that the post-selection distribution of the data differs fro m the original distribution. In particular, the observed data is constrained to lie in a subset of the original sample space that is determined by the selected model. This often makes the post-selection likelihood of the observed data intractable and maximum likelihood inference difficult. In this work, we get around the intractable likelihood by generating noisy unbiased estimates of the post-selection score function and using them in a stochastic ascent algorithm that yields correct post-selection maximum likelihood estimates. We apply the proposed technique to the problem of estimating linear models selected by the lasso. In an asymptotic analysis the resulting estimates are shown to be consistent for the selected parameters and to have a limiting truncated normal distribution. Confidence intervals constructed based on the asymptotic distribution obtain close to nominal coverage rates in all simulation settings considered, and the point estimates are shown to be superior to the lasso estimates when the true model is sparse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا