ﻻ يوجد ملخص باللغة العربية
We report a systematic investigation on the magnetization relaxation properties of iron-based half-metallic Heusler alloy Fe$_{2}$Cr$_{1-x}$Co_${x}$Si (FCCS) thin films using broadband angular-resolved ferromagnetic resonance. Band structure engineering through Co doping (x) demonstrated by first-principles calculations is shown to tune the intrinsic magnetic damping over an order of magnitude, namely 0.01-0.0008. Notably, the intrinsic damping constants for samples with high Co concentration are among the lowest reported for Heusler alloys and even comparable to magnetic insulator yttrium iron garnet. Furthermore, a significant reduction of both isotropic and anisotropic contributions of extrinsic damping of the FCCS alloys was found in the FCCS films with x=0.5-0.75, which is of particular importance for applications. These results demonstrate a practical recipe to tailor functional magnetization for Heusler alloy-based spintronics at room temperature
Though Weyl fermions have recently been observed in several materials with broken inversion symmetry, there are very few examples of such systems with broken time reversal symmetry. Various Co$_{2}$-based half-metallic ferromagnetic Heusler compounds
The low temperature heat capacity C_{p} of Fe_{1-x}Ga_{x} alloys with large magnetostriction has been investigated. The data were analyzed in the standard way using electron ($gamma T$) and phonon ($beta T^{3}$) contributions. The Debye temperature $
The local atomic environments and magnetic properties were investigated for a series of Co(1+x)Fe(2-x)Si (0<x<1) Heusler compounds. While the total magnetic moment in these compounds increases with the number of valance electrons, the highest Curie t
We use scanning SQUID microscopy to investigate the behavior of vortices in the presence of twin boundaries in the pnictide superconductor Ba(Fe1-xCox)2As2. We show that the vortices avoid pinning on twin boundaries. Individual vortices move in a pre
Doping dependence of the superconducting state structure and spin-fluctuation pairing mechanism in the $Ba(Fe_{1-x}Co_{x})_{2}As_{2}$ family is studied. BCS-like analysis of experimental data shows that in the overdoped regime, away from the AFM tran