ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on Patchy Reionization from Planck CMB Temperature Trispectrum

161   0   0.0 ( 0 )
 نشر من قبل Toshiya Namikawa
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Toshiya Namikawa




اسأل ChatGPT حول البحث

We present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics of the observed CMB anisotropies is altered. We estimate the trispectrum of the CMB temperature anisotropies to constrain spatial variation of the optical depth. We show that the measured trispectrum is consistent with that from the standard lensed CMB simulation at $2sigma$. While no evidence of the patchy reionization is found in the Planck 2015 temperature trispectrum, the CMB constraint on the patchy reionization is significantly improved from previous works. Assuming the analytic bubble-halo model of Wang and Hu (2006), the constraint obtained in this work rules out the typical bubble size at the ionization fraction of $sim0.5$ as $Rgtrsim 10$ Mpc. Further, our constraint implies that large-scale $B$-modes from the patchy reionization are not a significant contamination in detecting the primordial gravitational waves of $rgtrsim0.001$ if the $B$ mode induced by the patchy reionization is described by Dvorkin et al. (2009). The CMB trispectrum data starts to provide meaningful constraints on the patchy reionization.



قيم البحث

اقرأ أيضاً

Cosmic magnetic fields are observed to be coherent on large scales and could have a primordial origin. Non-Gaussian signals in the cosmic microwave background (CMB) are generated by primordial magnetic fields as the magnetic stresses and temperature anisotropy they induce depend quadratically on the magnetic field. We compute the CMB scalar trispectrum on large angular scales, for nearly scale-invariant magnetic fields, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately $10^{-29}$ and $10^{-19}$, respectively. The scalar anisotropic stress trispectrum is also calculated in the flat-sky approximation and yields a similar result. Observational limits on CMB non-Gaussianity from the Planck mission data allow us to set upper limits of $B_0 lesssim 0.6 $ nG on the present value of the primordial cosmic magnetic field. Considering the inflationary magnetic curvature mode in the trispectrum can further tighten the magnetic field upper limit to $B_0 lesssim 0.05 $ nG. These sub-nanoGauss constraints from the magnetic trispectrum are the most stringent limits so far on the strength of primordial magnetic fields, on megaparsec scales, significantly better than the limits obtained from the CMB bispectrum and the CMB power spectrum.
251 - Cora Dvorkin , Wayne Hu 2009
B-modes in CMB polarization from patchy reionization arise from two effects: generation of polarization from scattering of quadrupole moments by reionization bubbles, and fluctuations in the screening of E-modes from recombination. The scattering con tribution has been studied previously, but the screening contribution has not yet been calculated. We show that on scales smaller than the acoustic scale (l>300), the B-mode power from screening is larger than the B-mode power from scattering. The ratio approaches a constant ~2.5 below the damping scale (l>2000). On degree scales relevant for gravitational waves (l<100), screening B-modes have a white noise tail and are subdominant to the scattering effect. These results are robust to uncertainties in the modeling of patchy reionization.
We investigate constraints on cosmic reionization extracted from the Planck cosmic microwave background (CMB) data. We combine the Planck CMB anisotropy data in temperature with the low-multipole polarization data to fit LCDM models with various para meterizations of the reionization history. We obtain a Thomson optical depth tau=0.058 +/- 0.012 for the commonly adopted instantaneous reionization model. This confirms, with only data from CMB anisotropies, the low value suggested by combining Planck 2015 results with other data sets and also reduces the uncertainties. We reconstruct the history of the ionization fraction using either a symmetric or an asymmetric model for the transition between the neutral and ionized phases. To determine better constraints on the duration of the reionization process, we also make use of measurements of the amplitude of the kinetic Sunyaev-Zeldovich (kSZ) effect using additional information from the high resolution Atacama Cosmology Telescope and South Pole Telescope experiments. The average redshift at which reionization occurs is found to lie between z=7.8 and 8.8, depending on the model of reionization adopted. Using kSZ constraints and a redshift-symmetric reionization model, we find an upper limit to the width of the reionization period of Dz < 2.8. In all cases, we find that the Universe is ionized at less than the 10% level at redshifts above z~10. This suggests that an early onset of reionization is strongly disfavoured by the Planck data. We show that this result also reduces the tension between CMB-based analyses and constraints from other astrophysical sources.
558 - Meng Su 2011
Inhomogeneous reionization gives rise to angular fluctuations in the Cosmic Microwave Background (CMB) optical depth tau(n) to the last scattering surface, correlating different spherical harmonic modes and imprinting characteristic non-Gaussianity o n CMB maps. Recently the minimum variance quadratic estimator has been derived using this mode-coupling signal, and found that the optical depth fluctuations could be detected with (S/N)^2 ~ 100 in futuristic experiments like CMBPol. We first demonstrate that the non-Gaussian signal from gravitational lensing of CMB is the dominant source of contamination for reconstructing inhomogeneous reionization signals, even with 98% of its contribution removed by delensing. We then construct unbiased estimators that simultaneously reconstruct inhomogeneous reionization signals tau(n) and gravitational lensing potential phi(n). We apply our new unbiased estimators to future CMB experiment to assess the detectability of inhomogeneous reionization signals. With more physically motivated simulations of inhomogenuous reionizations that predict an order of magnitude smaller optical depth power spectrum than previous studies, we show that a CMBPol-like experiment could achieve a marginal detection of inhomogeneous reionization,(S/N)^2 ~ O(1) with this quadratic estimator to ~O(10) with the analogous maximum likelihood estimator.
We study constraints on allowed reionization histories by comparing predictions of a physical semi-numerical model with secondary temperature and polarization anisotropies of the cosmic microwave background (CMB). Our model has four free parameters c haracterizing the evolution of ionizing efficiency $zeta$ and the minimum mass $M_{mathrm{min}}$ of haloes that can produce ionizing radiation. Comparing the model predictions with the presently available data of the optical depth $tau$ and kinematic Sunyaev-Zeldovich signal, we find that we can already rule out a significant region of the parameter space. We limit the duration of reionization $Delta z=1.30^{+0.19}_{-0.60}$ ($Delta z < 2.9$ at $99%$ C.L.), one of the tightest constraints on the parameter. The constraints mildly favour $M_{mathrm{min}} gtrsim 10^9 mathrm{M}_{odot}$ (at $68%$ C.L.) at $z sim 8$, thus indicating the presence of reionization feedback. Our analysis provides an upper bound on the secondary $B$-mode amplitude $D_{l=200}^{BB}<18$ nK$^2$ at $99%$ C.L. We also study how the constraints can be further tightened with upcoming space and ground-based CMB missions. Our study, which relies solely on CMB data, has implications not only for upcoming CMB surveys for detecting primordial gravitational waves but also redshifted 21 cm studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا