ﻻ يوجد ملخص باللغة العربية
We study constraints on allowed reionization histories by comparing predictions of a physical semi-numerical model with secondary temperature and polarization anisotropies of the cosmic microwave background (CMB). Our model has four free parameters characterizing the evolution of ionizing efficiency $zeta$ and the minimum mass $M_{mathrm{min}}$ of haloes that can produce ionizing radiation. Comparing the model predictions with the presently available data of the optical depth $tau$ and kinematic Sunyaev-Zeldovich signal, we find that we can already rule out a significant region of the parameter space. We limit the duration of reionization $Delta z=1.30^{+0.19}_{-0.60}$ ($Delta z < 2.9$ at $99%$ C.L.), one of the tightest constraints on the parameter. The constraints mildly favour $M_{mathrm{min}} gtrsim 10^9 mathrm{M}_{odot}$ (at $68%$ C.L.) at $z sim 8$, thus indicating the presence of reionization feedback. Our analysis provides an upper bound on the secondary $B$-mode amplitude $D_{l=200}^{BB}<18$ nK$^2$ at $99%$ C.L. We also study how the constraints can be further tightened with upcoming space and ground-based CMB missions. Our study, which relies solely on CMB data, has implications not only for upcoming CMB surveys for detecting primordial gravitational waves but also redshifted 21 cm studies.
We present constraints on the patchy reionization by measuring the trispectrum of the Planck 2015 cosmic microwave background (CMB) temperature anisotropies. The patchy reionization leads to anisotropies in the CMB optical depth, and the statistics o
Current cosmic microwave background (CMB) bounds on the sum of the neutrino masses assume a sudden reionization scenario described by a single parameter that determines the onset of reionization. We investigate the bounds on the neutrino mass in a mo
We place functional constraints on the shape of the inflaton potential from the cosmic microwave background through a variant of the generalized slow roll approximation that allows large amplitude, rapidly changing deviations from scale-free conditio
We show that a non-minimal coupling of electromagnetism with background torsion can produce birefringence of the electromagnetic waves. This birefringence gives rise to a B-mode polarization of the CMB. From the bounds on B-mode from WMAP and BOOMERa
We seek to clarify the origin of constraints on the dark energy equation of state parameter from CMB lensing tomography, that is the combination of galaxy clustering and the cross-correlation of galaxies with CMB lensing in a number of redshift bins.