ترغب بنشر مسار تعليمي؟ اضغط هنا

7D supersymmetric Yang-Mills on curved manifolds

90   0   0.0 ( 0 )
 نشر من قبل Maxim Zabzine
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study 7D maximally supersymmetric Yang-Mills theory on curved manifolds that admit Killing spinors. If the manifold admits at least two Killing spinors (Sasaki-Einstein manifolds) we are able to rewrite the supersymmetric theory in terms of a cohomological complex. In principle this cohomological complex makes sense for any K-contact manifold. For the case of toric Sasaki-Einstein manifolds we derive explicitly the perturbative part of the partition function and speculate about the non-perturbative part. We also briefly discuss the case of 3-Sasaki manifolds and suggest a plausible form for the full non-perturbative answer.

قيم البحث

اقرأ أيضاً

We study 7D maximally supersymmetric Yang-Mills theory on 3-Sasakian manifolds. For manifolds whose hyper-Kahler cones are hypertoric we derive the perturbative part of the partition function. The answer involves a special function that counts intege r lattice points in a rational convex polyhedral cone determined by hypertoric data. This also gives a more geometric structure to previous enumeration results of holomorphic functions in the literature. Based on physics intuition, we provide a factorisation result for such functions. The full proof of this factorisation using index calculations will be detailed in a forthcoming paper.
The usual action of Yang-Mills theory is given by the quadratic form of curvatures of a principal G bundle defined on four dimensional manifolds. The non-linear generalization which is known as the Born-Infeld action has been given. In this paper we give another non-linear generalization on four dimensional manifolds and call it a universal Yang-Mills action. The advantage of our model is that the action splits {bf automatically} into two parts consisting of self-dual and anti-self-dual directions. Namely, we have automatically the self-dual and anti-self-dual equations without solving the equations of motion as in a usual case. Our method may be applicable to recent non-commutative Yang-Mills theories studied widely.
85 - Shota Komatsu 2017
This is a pedagogical review on the integrability-based approach to the three-point function in N=4 supersymmetric Yang-Mills theory. We first discuss the computation of the structure constant at weak coupling and show that the result can be recast a s a sum over partitions of the rapidities of the magnons. We then introduce a non-perturbative framework, called the hexagon approach, and explain how one can use the symmetries (i.e. superconformal and gauge symmetries) and integrability to determine the structure constants. This article is based on the lectures given in Les Houches Summer School Integrability: From statistical systems to gauge theory in June 2016.
We introduce a nonperturbative approach to correlation functions of two determinant operators and one non-protected single-trace operator in planar N=4 supersymmetric Yang-Mills theory. Based on the gauge/string duality, we propose that they correspo nd to overlaps on the string worldsheet between an integrable boundary state and a state dual to the single-trace operator. We determine the boundary state using symmetry and integrability of the dual superstring sigma model, and write down expressions for the correlators at finite coupling, which we conjecture to be valid for operators of arbitrary size. The proposal is put to test at weak coupling.
We summarize recent progress in lattice studies of four-dimensional N=4 supersymmetric Yang--Mills theory and present preliminary results from ongoing investigations. Our work is based on a construction that exactly preserves a single supersymmetry a t non-zero lattice spacing, and we review a new procedure to regulate flat directions by modifying the moduli equations in a manner compatible with this supersymmetry. This procedure defines an improved lattice action that we have begun to use in numerical calculations. We discuss some highlights of these investigations, including the static potential and an update on the question of a possible sign problem in the lattice theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا