ﻻ يوجد ملخص باللغة العربية
The Casimir effect in an inhomogeneous dielectric is investigated using Lifshitzs theory of electromagnetic vacuum energy. A permittivity function that depends continuously on one Cartesian coordinate is chosen, bounded on each side by homogeneous dielectrics. The result for the Casimir stress is infinite everywhere inside the inhomogeneous region, a divergence that does not occur for piece-wise homogeneous dielectrics with planar boundaries. A Casimir force per unit volume can be extracted from the infinite stress but it diverges on the boundaries between the inhomogeneous medium and the homogeneous dielectrics. An alternative regularization of the vacuum stress is considered that removes the contribution of the inhomogeneity over small distances, where macroscopic electromagnetism is invalid. The alternative regularization yields a finite Casimir stress inside the inhomogeneous region, but the stress and force per unit volume diverge on the boundaries with the homogeneous dielectrics. The case of inhomogeneous dielectrics with planar boundaries thus falls outside the current understanding of the Casimir effect.
The dielectric sphere has been an important test case for understanding and calculating the vacuum force of a dielectric body onto itself. Here we develop a method for computing this force in homogeneous spheres of arbitrary dielectric properties emb
A general, exact formula is derived for the expectation value of the electromagnetic energy density of an inhomogeneous absorbing and dispersive dielectric medium in thermal equilibrium, assuming that the medium is well approximated as a continuum. F
Material strain has recently received growing attention as a complementary resource to control the energy levels of quantum emitters embedded inside a solid-state environment. Some rare-earth ion dopants provide an optical transition which simultaneo
We present an analytical study of state transfer in a spin chain in the presence of an inhomogeneous set of exchange coefficients. We initially consider the homogeneous case and describe a method to obtain the energy spectrum of the system. Under cer
We present a canonical quantization of macroscopic electrodynamics. The results apply to inhomogeneous media with a broad class of linear magneto-electric responses which are consistent with the Kramers-Kronig and Onsager relations. Through its abili