ﻻ يوجد ملخص باللغة العربية
The 1+1 REMPI spectrum of SiO in the 210-220 nm range is recorded. Observed bands are assigned to the $A-X$ vibrational bands $(v``=0-3, v`=5-10)$ and a tentative assignment is given to the 2-photon transition from $X$ to the n=12-13 $[X^{2}{Sigma}^{+},v^{+}=1]$ Rydberg states at 216-217 nm. We estimate the IP of SiO to be 11.59(1) eV. The SiO$^{+}$ cation has previously been identified as a molecular candidate amenable to laser control. Our work allows us to identify an efficient method for loading cold SiO$^{+}$ from an ablated sample of SiO into an ion trap via the $(5,0)$ $A-X$ band at 213.977 nm.
The dispersed fluorescence following pulsed dye laser excitation of the $textrm{B}_2 Sigma^+ - textrm{X}^2 Sigma^+(0,0)$ band of a cold sample of SiO$^+$ has been recorded and analyzed. The branching ratios for $textrm{B}_2 Sigma^+ (v=0) rightarrow t
Neutral Ytterbium (YbI) and singly ionized Ytterbium (YbII) is widely used in experiments in quantum optics, metrology and quantum information science. We report on the investigation of isotope selective two-photoionisation of YbI that allows for eff
We demonstrate an efficient scheme for continuous trap loading based upon spatially selective optical pumping. We discuss the case of $^{1}$S$_{0}$ calcium atoms in an optical dipole trap (ODT), however, similar strategies should be applicable to a w
We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 3S1 -> 3 3P2 line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning Delta = -41 MHz) typically contains few times 1
We have demonstrated that the ion current resulting from collisions between metastable krypton atoms in a magneto-optical trap can be used to precisely measure the trap loading rate. We measured both the ion current of the abundant isotope Kr-83 (iso