ﻻ يوجد ملخص باللغة العربية
In this paper, we present a novel approach to perform deep neural networks layer-wise weight initialization using Linear Discriminant Analysis (LDA). Typically, the weights of a deep neural network are initialized with: random values, greedy layer-wise pre-training (usually as Deep Belief Network or as auto-encoder) or by re-using the layers from another network (transfer learning). Hence, many training epochs are needed before meaningful weights are learned, or a rather similar dataset is required for seeding a fine-tuning of transfer learning. In this paper, we describe how to turn an LDA into either a neural layer or a classification layer. We analyze the initialization technique on historical documents. First, we show that an LDA-based initialization is quick and leads to a very stable initialization. Furthermore, for the task of layout analysis at pixel level, we investigate the effectiveness of LDA-based initialization and show that it outperforms state-of-the-art random weight initialization methods.
In deep networks, the lost data details significantly degrade the performances of image segmentation. In this paper, we propose to apply Discrete Wavelet Transform (DWT) to extract the data details during feature map down-sampling, and adopt Inverse
Automatic analysis of scanned historical documents comprises a wide range of image analysis tasks, which are often challenging for machine learning due to a lack of human-annotated learning samples. With the advent of deep neural networks, a promisin
Semantic segmentation is pixel-wise classification which retains critical spatial information. The feature map reuse has been commonly adopted in CNN based approaches to take advantage of feature maps in the early layers for the later spatial reconst
In this paper, we propose a new image instance segmentation method that segments individual glands (instances) in colon histology images. This is a task called instance segmentation that has recently become increasingly important. The problem is chal
Objective: A new image instance segmentation method is proposed to segment individual glands (instances) in colon histology images. This process is challenging since the glands not only need to be segmented from a complex background, they must also b