ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Fully Dense Neural Networks for Image Semantic Segmentation

285   0   0.0 ( 0 )
 نشر من قبل Zhen Mingmin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semantic segmentation is pixel-wise classification which retains critical spatial information. The feature map reuse has been commonly adopted in CNN based approaches to take advantage of feature maps in the early layers for the later spatial reconstruction. Along this direction, we go a step further by proposing a fully dense neural network with an encoder-decoder structure that we abbreviate as FDNet. For each stage in the decoder module, feature maps of all the previous blocks are adaptively aggregated to feed-forward as input. On the one hand, it reconstructs the spatial boundaries accurately. On the other hand, it learns more efficiently with the more efficient gradient backpropagation. In addition, we propose the boundary-aware loss function to focus more attention on the pixels near the boundary, which boosts the hard examples labeling. We have demonstrated the best performance of the FDNet on the two benchmark datasets: PASCAL VOC 2012, NYUDv2 over previous works when not considering training on other datasets.



قيم البحث

اقرأ أيضاً

Transformers have shown impressive performance in various natural language processing and computer vision tasks, due to the capability of modeling long-range dependencies. Recent progress has demonstrated to combine such transformers with CNN-based s emantic image segmentation models is very promising. However, it is not well studied yet on how well a pure transformer based approach can achieve for image segmentation. In this work, we explore a novel framework for semantic image segmentation, which is encoder-decoder based Fully Transformer Networks (FTN). Specifically, we first propose a Pyramid Group Transformer (PGT) as the encoder for progressively learning hierarchical features, while reducing the computation complexity of the standard visual transformer(ViT). Then, we propose a Feature Pyramid Transformer (FPT) to fuse semantic-level and spatial-level information from multiple levels of the PGT encoder for semantic image segmentation. Surprisingly, this simple baseline can achieve new state-of-the-art results on multiple challenging semantic segmentation benchmarks, including PASCAL Context, ADE20K and COCO-Stuff. The source code will be released upon the publication of this work.
Segmentation of 3D images is a fundamental problem in biomedical image analysis. Deep learning (DL) approaches have achieved state-of-the-art segmentation perfor- mance. To exploit the 3D contexts using neural networks, known DL segmentation methods, including 3D convolution, 2D convolution on planes orthogonal to 2D image slices, and LSTM in multiple directions, all suffer incompatibility with the highly anisotropic dimensions in common 3D biomedical images. In this paper, we propose a new DL framework for 3D image segmentation, based on a com- bination of a fully convolutional network (FCN) and a recurrent neural network (RNN), which are responsible for exploiting the intra-slice and inter-slice contexts, respectively. To our best knowledge, this is the first DL framework for 3D image segmentation that explicitly leverages 3D image anisotropism. Evaluating using a dataset from the ISBI Neuronal Structure Segmentation Challenge and in-house image stacks for 3D fungus segmentation, our approach achieves promising results comparing to the known DL-based 3D segmentation approaches.
85 - Xiaowei Xu , Qing Lu , Yu Hu 2018
With pervasive applications of medical imaging in health-care, biomedical image segmentation plays a central role in quantitative analysis, clinical diagno- sis, and medical intervention. Since manual anno- tation su ers limited reproducibility, ardu ous e orts, and excessive time, automatic segmentation is desired to process increasingly larger scale histopathological data. Recently, deep neural networks (DNNs), par- ticularly fully convolutional networks (FCNs), have been widely applied to biomedical image segmenta- tion, attaining much improved performance. At the same time, quantization of DNNs has become an ac- tive research topic, which aims to represent weights with less memory (precision) to considerably reduce memory and computation requirements of DNNs while maintaining acceptable accuracy. In this paper, we apply quantization techniques to FCNs for accurate biomedical image segmentation. Unlike existing litera- ture on quantization which primarily targets memory and computation complexity reduction, we apply quan- tization as a method to reduce over tting in FCNs for better accuracy. Speci cally, we focus on a state-of- the-art segmentation framework, suggestive annotation [22], which judiciously extracts representative annota- tion samples from the original training dataset, obtain- ing an e ective small-sized balanced training dataset. We develop two new quantization processes for this framework: (1) suggestive annotation with quantiza- tion for highly representative training samples, and (2) network training with quantization for high accuracy. Extensive experiments on the MICCAI Gland dataset show that both quantization processes can improve the segmentation performance, and our proposed method exceeds the current state-of-the-art performance by up to 1%. In addition, our method has a reduction of up to 6.4x on memory usage.
153 - Xiong Zhang , Hongmin Xu , Hong Mo 2020
Neural Architecture Search (NAS) has shown great potentials in automatically designing scalable network architectures for dense image predictions. However, existing NAS algorithms usually compromise on restricted search space and search on proxy task to meet the achievable computational demands. To allow as wide as possible network architectures and avoid the gap between target and proxy dataset, we propose a Densely Connected NAS (DCNAS) framework, which directly searches the optimal network structures for the multi-scale representations of visual information, over a large-scale target dataset. Specifically, by connecting cells with each other using learnable weights, we introduce a densely connected search space to cover an abundance of mainstream network designs. Moreover, by combining both path-level and channel-level sampling strategies, we design a fusion module to reduce the memory consumption of ample search space. We demonstrate that the architecture obtained from our DCNAS algorithm achieves state-of-the-art performances on public semantic image segmentation benchmarks, including 84.3% on Cityscapes, and 86.9% on PASCAL VOC 2012. We also retain leading performances when evaluating the architecture on the more challenging ADE20K and Pascal Context dataset.
Undersampling the k-space data is widely adopted for acceleration of Magnetic Resonance Imaging (MRI). Current deep learning based approaches for supervised learning of MRI image reconstruction employ real-valued operations and representations by tre ating complex valued k-space/spatial-space as real values. In this paper, we propose complex dense fully convolutional neural network ($mathbb{C}$DFNet) for learning to de-alias the reconstruction artifacts within undersampled MRI images. We fashioned a densely-connected fully convolutional block tailored for complex-valued inputs by introducing dedicated layers such as complex convolution, batch normalization, non-linearities etc. $mathbb{C}$DFNet leverages the inherently complex-valued nature of input k-space and learns richer representations. We demonstrate improved perceptual quality and recovery of anatomical structures through $mathbb{C}$DFNet in contrast to its real-valued counterparts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا