ﻻ يوجد ملخص باللغة العربية
The common saying, that information is power, takes a rigorous form in stochastic thermodynamics, where a quantitative equivalence between the two helps explain the paradox of Maxwells demon in its ability to reduce entropy. In the present paper, we build on earlier work on the interplay between the relative cost and benefits of information in producing work in cyclic operation of thermodynamic engines (by Sandberg etal. 2014). Specifically, we study the general case of overdamped particles in a time-varying potential (control action) in feedback that utilizes continuous measurements (nonlinear filtering) of a thermodynamic ensemble, to produce suitable adaptations of the second law of thermodynamics that involve information.
We extend certain basic and general concepts of thermodynamics to discrete Markov systems exchanging work and heat with reservoirs. In this framework we show that the celebrated Clausius inequality can be generalized and becomes an equality, signific
We study a class of cyclic Brownian heat engines in the framework of finite-time thermodynamics. For infinitely long cycle times, the engine works at the Carnot efficiency limit producing, however, zero power. For the efficiency at maximum power, we
The aim of this paper is to determine lost works in a molecular engine and compare results with macro (classical) heat engines. Firstly, irreversible thermodynamics are reviewed for macro and molecular cycles. Secondly, irreversible thermodynamics ap
In systems described by the scattering theory, there is an upper bound, lower than Carnot, on the efficiency of steady-state heat to work conversion at a given output power. We show that interacting systems can overcome such bound and saturate, in th
We present a unified perspective on nonequilibrium heat engines by generalizing nonlinear irreversible thermodynamics. For tight-coupling heat engines, a generic constitutive relation of nonlinear response accurate up to the quadratic order is derive