ترغب بنشر مسار تعليمي؟ اضغط هنا

The circumstellar disk HD$,$169142: gas, dust and planets acting in concert?

65   0   0.0 ( 0 )
 نشر من قبل Adriana Pohl
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HD$,$169142 is an excellent target to investigate signs of planet-disk interaction due to the previous evidence of gap structures. We performed J-band (~1.2{mu}m) polarized intensity imaging of HD169142 with VLT/SPHERE. We observe polarized scattered light down to 0.16 (~19 au) and find an inner gap with a significantly reduced scattered light flux. We confirm the previously detected double ring structure peaking at 0.18 (~21 au) and 0.56 (~66 au), and marginally detect a faint third gap at 0.70-0.73 (~82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity, but fails to reproduce their depths. It, however, gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pile-up of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require a more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate.

قيم البحث

اقرأ أيضاً

145 - C. Tschudi , H.M. Schmid 2021
We investigate high resolution imaging polarimetry of HD 169142 taken in the R and I bands with the SPHERE/ZIMPOL instrument for an accurate quantitative measurement of the radiation scattered by the circumstellar disk. We observe a strong dependence of the disk polarimetry on the atmospheric turbulences, which strongly impact the AO performance. With our non-coronagraphic data we can analyze the polarimetric signal of the disk simultaneously with the strongly variable stellar PSF, correct for the convolution effects to determine the intrinsic polarization of the disk with high precision. We also extract the disk intensity signal and derive the fractional polarization. We compare the scattered flux from the inner and outer disk rings with the corresponding thermal dust emissions measured in the IR and estimate the ratio between scattered and absorbed radiation. We obtain ratios between the integrated disk polarization flux and total system flux of 0.43% for the R band and 0.55% for the I band. This indicates a reddish color for the light reflection by the dust. The inner disk ring contributes about 75% to the total disk flux. The obtained fractional polarization for the bright inner disk ring is 23.6% for the I band and similar for the R band. The ratio between scattered disk flux and star flux is about 2.3%. This is much smaller than the derived IR excess of 17.6% for the disk components observed in scattered light. This indicates that only a small fraction of the radiation illuminating the disk is scattered; most is absorbed and reemitted in the IR. We conclude that accurate, quantitative measurements of the scattered light from circumstellar disks are possible with ground based high contrast AO systems, if the PSF convolution effects are properly taken into account, and this provides important new constraints on the properties of the scattering dust.
The amount of dust present in circumstellar disks is expected to steadily decrease with age due to the growth from micron-sized particles to planetesimals and planets. Mature circumstellar disks, however, can be observed to contain significant amount s of dust and possess high dust-to-gas ratios. Using HD 163296 as our case study, we explore how the formation of giant planets in disks can create the conditions for collisionally rejuvenating the dust population, halting or reversing the expected trend. We combine N-body simulations with statistical methods and impact scaling laws to estimate the dynamical and collisional excitation of the planetesimals due to the formation of HD 163296s giant planets. We show that this process creates a violent collisional environment across the disk that can inject collisionally produced second-generation dust into it, significantly contributing to the observed dust-to-gas ratio. The spatial distribution of the dust production can explain the observed local enrichments in HD 163296s inner regions. The results obtained for HD 163296 can be extended to any disk with embedded forming giant planets and may indicate a common evolutionary stage in the life of such circumstellar disks. Furthermore, the dynamical excitation of the planetesimals could result in the release of transient, non-equilibrium gas species like H2O, CO2, NH3 and CO in the disk due to ice sublimation during impacts and, due to the excited planetesimals being supersonic with respect to the gas, could produce bow shocks in the latter that could heat it and cause a broadening of its emission lines.
We report the detection of a faint pointlike feature possibly related to ongoing planet-formation in the disk of the transition disk star HD 169142. The pointlike feature has a $Delta$mag(L)$sim$6.4, at a separation of $sim$0.11 and PA$sim$0$^{circ}$ . Given its lack of an H or K$_{S}$ counterpart despite its relative brightness, this candidate cannot be explained by purely photospheric emission and must be a disk feature heated by an as yet unknown source. Its extremely red colors make it highly unlikely to be a background object, but future multi-wavelength followup is necessary for confirmation and characterization of this feature.
We present ALMA observations of the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{^{13}CO}~J = 1 - 0$ and $mathrm{C^{18}O}~J = 1 - 0$ line emissions of the protoplanetary disk associated with HD~142527. The $98.5~mathrm{GHz}$ continuum shows a st rong azimuthal-asymmetric distribution similar to that of the previously reported $336~mathrm{GHz}$ continuum, with a peak emission in dust concentrated region in the north. The disk is optically thin in both the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{C^{18}O}~J = 1 - 0$ emissions. We derive the distributions of gas and dust surface densities, $Sigma_mathrm{g}$ and $Sigma_mathrm{d}$, and the dust spectral opacity index, $beta$, in the disk from ALMA Band 3 and Band 7 data. In the analyses, we assume the local thermodynamic equilibrium and the disk temperature to be equal to the peak brightness temperature of $mathrm{^{13}CO}~J = 3 - 2$ with a continuum emission. The gas-to-dust ratio, $mathrm{G/D}$, varies azimuthally with a relation $mathrm{G/D} propto Sigma_mathrm{d}^{-0.53}$, and $beta$ is derived to be $approx 1$ and $approx 1.7$ in the northern and southern regions of the disk, respectively. These results are consistent with the accumulation of larger dust grains in a higher pressure region. In addition, our results show that the peak $Sigma_mathrm{d}$ is located ahead of the peak $Sigma_mathrm{g}$. If the latter corresponds to a vortex of high gas pressure, the results indicate that the dust is trapped ahead of the vortex, as predicted by some theoretical studies.
This work aims to understand which midplane conditions are probed by the DCO$^+$ emission in the disk around the Herbig Ae star HD 169142. We explore the sensitivity of the DCO$^+$ formation pathways to the gas temperature and the CO abundance. The D CO$^+$ $J$=3-2 transition was observed with ALMA at a spatial resolution of 0.3. The HD 169142 DCO$^+$ radial intensity profile reveals a warm, inner component at radii <30 AU and a broad, ring-like structure from ~50-230 AU with a peak at 100 AU just beyond the millimeter grain edge. We modeled DCO$^+$ emission in HD 169142 with a physical disk structure adapted from the literature, and employed a simple deuterium chemical network to investigate the formation of DCO$^+$ through the cold deuterium fractionation pathway via H$_2$D$^+$. Contributions from the warm deuterium fractionation pathway via CH$_2$D$^+$ are approximated using a constant abundance in the intermediate disk layers. Parameterized models show that alterations to the midplane gas temperature and CO abundance of the literature model are both needed to recover the observed DCO$^+$ radial intensity profile. The best-fit model contains a shadowed, cold midplane in the region z/r < 0.1 with an 8 K decrease in gas temperature and a factor of five CO depletion just beyond the millimeter grain edge, and a 2 K decrease in gas temperature for r > 120 AU. The warm deuterium fractionation pathway is implemented as a constant DCO$^+$ abundance of 2.0$times$10$^{-12}$ between 30-70 K. The DCO$^+$ emission probes a reservoir of cold material in the HD 169142 outer disk that is not revealed by the millimeter continuum, the SED, nor the emission from the 12CO, 13CO, or C18O $J$=2-1 lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا