ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative polarimetry of the disk around HD 169142

146   0   0.0 ( 0 )
 نشر من قبل Christian Tschudi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate high resolution imaging polarimetry of HD 169142 taken in the R and I bands with the SPHERE/ZIMPOL instrument for an accurate quantitative measurement of the radiation scattered by the circumstellar disk. We observe a strong dependence of the disk polarimetry on the atmospheric turbulences, which strongly impact the AO performance. With our non-coronagraphic data we can analyze the polarimetric signal of the disk simultaneously with the strongly variable stellar PSF, correct for the convolution effects to determine the intrinsic polarization of the disk with high precision. We also extract the disk intensity signal and derive the fractional polarization. We compare the scattered flux from the inner and outer disk rings with the corresponding thermal dust emissions measured in the IR and estimate the ratio between scattered and absorbed radiation. We obtain ratios between the integrated disk polarization flux and total system flux of 0.43% for the R band and 0.55% for the I band. This indicates a reddish color for the light reflection by the dust. The inner disk ring contributes about 75% to the total disk flux. The obtained fractional polarization for the bright inner disk ring is 23.6% for the I band and similar for the R band. The ratio between scattered disk flux and star flux is about 2.3%. This is much smaller than the derived IR excess of 17.6% for the disk components observed in scattered light. This indicates that only a small fraction of the radiation illuminating the disk is scattered; most is absorbed and reemitted in the IR. We conclude that accurate, quantitative measurements of the scattered light from circumstellar disks are possible with ground based high contrast AO systems, if the PSF convolution effects are properly taken into account, and this provides important new constraints on the properties of the scattering dust.

قيم البحث

اقرأ أيضاً

We report the detection of a faint pointlike feature possibly related to ongoing planet-formation in the disk of the transition disk star HD 169142. The pointlike feature has a $Delta$mag(L)$sim$6.4, at a separation of $sim$0.11 and PA$sim$0$^{circ}$ . Given its lack of an H or K$_{S}$ counterpart despite its relative brightness, this candidate cannot be explained by purely photospheric emission and must be a disk feature heated by an as yet unknown source. Its extremely red colors make it highly unlikely to be a background object, but future multi-wavelength followup is necessary for confirmation and characterization of this feature.
107 - S. Hunziker , H. M. Schmid , J. Ma 2021
We present high-precision photometry and polarimetry for the protoplanetary disk around HD142527, with a focus on determining the light scattering parameters of the dust. We re-reduced polarimetric differential imaging data of HD142527 in the VBB (73 5 nm) and H-band (1625 nm) from the ZIMPOL and IRDIS subinstruments of SPHERE/VLT. With polarimetry and photometry based on reference star differential imaging, we were able to measure the linearly polarized intensity and the total intensity of the light scattered by the circumstellar disk with high precision. We used simple Monte Carlo simulations of multiple light scattering by the disk surface to derive constraints for three scattering parameters of the dust: the maximum polarization of $P_{rm max}$, the asymmetry parameter $g$, and the single-scattering albedo $omega$. We measure a reflected total intensity of $51.4pm1.5$ mJy and $206pm12$ mJy and a polarized intensity of $11.3pm0.3$ mJy and $55.1pm3.3$ mJy in the VBB and H-band, respectively. We also find in the visual range a degree of polarization that varies between $28%$ on the far side of the disk and $17%$ on the near side. The disk shows a red color for the scattered light intensity and the polarized intensity, which are about twice as high in the near-infrared when compared to the visual. We determine with model calculations the scattering properties of the dust particles and find evidence for strong forward scattering ($gapprox 0.5-0.75$), relatively low single-scattering albedo ($omega approx 0.2-0.5$), and high maximum polarization ($P_{rm max} approx 0.5-0.75$) at the surface on the far side of the disk for both observed wavelengths. The optical parameters indicate the presence of large aggregate dust particles, which are necessary to explain the high maximum polarization, the strong forward-scattering nature of the dust, and the observed red disk color.
We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD 32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, w e detect the nearly edge-on disk at >5sigma levels from ~0.45 arcsec to ~1.7 arcsec (50-192 AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of ~0.75 arcsec (NE side) and ~0.65 arcsec (SW side). Global forward-modelling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110 AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95 AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from ~0.25-1.6 arcsec, although the central region is quite noisy and high S/N are only found in the range ~0.75-1.2 arcsec. The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from ~10% at 0.55 arcsec to ~25% at 1.6 arcsec. The maximum is found at scattering angles of ~90degrees, either from the main components of the disk or from dust grains blown out to larger radii.
The Herbig Ae star HD 169142 is known to have a gaseous disk with a large inner hole, and also a photometrically variable inner dust component in the sub-au region. Following up our previous analysis, we further studied the temporal evolution of inne r dust around HD 169142, which may provide information on the evolution from late-stage protoplanetary disks to debris disks. We used near-infrared interferometric observations obtained with VLTI/PIONIER to constrain the dust distribution at three epochs spanning six years. We also studied the photometric variability of HD 169142 using our optical-infrared observations and archival data. Our results indicate that a dust ring at ~0.3 au formed at some time between 2013 and 2018, and then faded (but did not completely disappear) by 2019. The short-term variability resembles that observed in extreme debris disks, and is likely related to short-lived dust of secondary origin, though variable shadowing from the inner ring could be an alternative interpretation. If confirmed, this is the first direct detection of secondary dust production inside a protoplanetary disk.
71 - R. Gratton , R. Ligi , E. Sissa 2019
Young planets are expected to cause perturbations in protostellar disks that may be used to infer their presence. Clear detection of still-forming planets embedded within gas-rich disks is rare. HD 169142 is a very young Herbig Ae-Be star surrounded by a pre-transitional disk, composed of at least three rings. While claims of sub-stellar objects around this star have been made previously, follow-up studies remain inconclusive. We used SPHERE at ESO VLT to obtain a sequence of high-contrast images of the immediate surroundings of this star over about three years. This enables a photometric and astrometric analysis of the structures in the disk. While we were unable to definitively confirm the previous claims of a massive sub-stellar object at 0.1-0.15 arcsec from the star, we found both spirals and blobs within the disk. The spiral pattern may be explained as due to the presence of a primary, a secondary, and a tertiary arm excited by a planet of a few Jupiter masses lying along the primary arm, likely in the cavities between the rings. The blobs orbit the star consistently with Keplerian motion, allowing a dynamical determination of the mass of the star. While most of these blobs are located within the rings, we found that one of them lies in the cavity between the rings, along the primary arm of the spiral design. This blob might be due to a planet that might also be responsible for the spiral pattern observed within the rings and for the cavity between the two rings. The planet itself is not detected at short wavelengths, where we only see a dust cloud illuminated by stellar light, but the planetary photosphere might be responsible for the emission observed in the K band. The mass of this putative planet may be constrained using photometric and dynamical arguments; it should be between 1 and 4 Jupiter masses. The brightest blobs are found at the 1:2 resonance with this putative planet
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا