ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of superparamagnetism in coexistence with quantum anomalous Hall C=$pm$1 and C=0 Chern states

104   0   0.0 ( 0 )
 نشر من قبل Ella Lachman
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simultaneous transport and scanning nanoSQUID-on-tip magnetic imaging studies in Cr-(Bi,Sb)$_2$Te$_3$ modulation-doped films reveal the presence of superparamagnetic order within the quantum anomalous Hall regime. In contrast to the expectation that a long-range ferromagnetic order is required for establishing the quantum anomalous Hall state, superparamagnetic dynamics of weakly interacting nanoscale magnetic islands is observed both in the plateau transition regions as well as within the fully quantized C=$pm$1 Chern plateaus. Modulation doping of the topological insulator films is found to give rise to significantly larger superparamagnetic islands as compared to uniform magnetic doping, evidently leading to enhanced robustness of the quantum anomalous Hall effect. Nonetheless, even in this more robust quantum state, attaining full quantization of transport coefficients requires magnetic alignment of at least 95% of the superparamagnetic islands. The superparamagnetic order is also found within the incipient C=0 zero Hall plateau, which may host an axion state if the top and bottom magnetic layers are magnetized in opposite directions. In this regime, however, a significantly lower level of island alignment is found in our samples, hindering the formation of the axion state. Comprehension and control of superparamagnetic dynamics is thus a key factor in apprehending the fragility of the quantum anomalous Hall state and in enhancing the endurance of the different quantized states to higher temperatures for utilization of robust topological protection in novel devices.

قيم البحث

اقرأ أيضاً

The quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has quantized Hall resistance of h/Ce2 and vanishing longitudinal resistance under zero magnetic field, where C is called the Chern number. The QAH effect h as been realized in magnetic topological insulators (TIs) and magic-angle twisted bilayer graphene. Despite considerable experimental efforts, the zero magnetic field QAH effect has so far been realized only for C = 1. Here we used molecular beam epitaxy to fabricate magnetic TI multilayers and realized the QAH effect with tunable Chern number C up to 5. The Chern number of these QAH insulators is tuned by varying the magnetic doping concentration or the thickness of the interior magnetic TI layers in the multilayer samples. A theoretical model is developed to understand our experimental observations and establish phase diagrams for QAH insulators with tunable Chern numbers. The realization of QAH insulators with high tunable Chern numbers facilitates the potential applications of dissipationless chiral edge currents in energy-efficient electronic devices and opens opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.
We predict that in a twisted homobilayer of transition-metal dichalcogenide MoS$_2$, spin-orbit coupling in the conduction band states from $pm K$ valleys can give rise to moir{e} flat bands with nonzero Chern numbers in each valley. The nontrivial b and topology originates from a unique combination of angular twist and local mirror symmetry breaking in each individual layer, which results in unusual skyrmionic spin textures in momentum space with skyrmion number $mathcal{S} = pm 2$. Our Hartree-Fock analysis further suggests that density-density interactions generically drive the system at $1/2$-filling into a valley-polarized state, which realizes a correlated quantum anomalous Hall state with Chern number $mathcal{C} = pm 2$. Effects of displacement fields are discussed with comparison to nontrivial topology from layer-pseudospin magnetic fields.
79 - Hongming Weng , Rui Yu , Xiao Hu 2015
Over a long period of exploration, the successful observation of quantized version of anomalous Hall effect (AHE) in thin film of magnetically-doped topological insulator completed a quantum Hall trio---quantum Hall effect (QHE), quantum spin Hall ef fect (QSHE), and quantum anomalous Hall effect (QAHE). On the theoretical front, it was understood that intrinsic AHE is related to Berry curvature and U(1) gauge field in momentum space. This understanding established connection between the QAHE and the topological properties of electronic structures characterized by the Chern number. With the time reversal symmetry broken by magnetization, a QAHE system carries dissipationless charge current at edges, similar to the QHE where an external magnetic field is necessary. The QAHE and corresponding Chern insulators are also closely related to other topological electronic states, such as topological insulators and topological semimetals, which have been extensively studied recently and have been known to exist in various compounds. First-principles electronic structure calculations play important roles not only for the understanding of fundamental physics in this field, but also towards the prediction and realization of realistic compounds. In this article, a theoretical review on the Berry phase mechanism and related topological electronic states in terms of various topological invariants will be given with focus on the QAHE and Chern insulators. We will introduce the Wilson loop method and the band inversion mechanism for the selection and design of topological materials, and discuss the predictive power of first-principles calculations. Finally, remaining issues, challenges and possible applications for future investigations in the field will be addressed.
Topological insulators doped with transition metals have recently been found to host a strong ferromagnetic state with perpendicular to plane anisotropy as well as support a quantum Hall state with edge channel transport, even in the absence of an ex ternal magnetic field. It remains unclear however why a robust magnetic state should emerge in materials of relatively low crystalline quality and dilute magnetic doping. Indeed, recent experiments suggest that the ferromagnetism exhibits at least some superparamagnetic character. We report on transport measurements in a sample that shows perfect quantum anomalous Hall quantization, while at the same time exhibits traits in its transport data which suggest inhomogeneities. We speculate that this may be evidence that the percolation path interpretation used to explain the transport during the magnetic reversal may actually have relevance over the entire field range.
In magnetic topological phases of matter, the quantum anomalous Hall (QAH) effect is an emergent phenomenon driven by ferromagnetic doping, magnetic proximity effects and strain engineering. The realization of QAH states with multiple dissipationless edge and surface conduction channels defined by a Chern number $mathcal{C}geq1$ was foreseen for the ferromagnetically ordered SnTe class of topological crystalline insulators (TCIs). From magnetotransport measurements on Sn$_{1-x}$Mn$_{x}$Te ($0.00leq{x}leq{0.08}$)(111) epitaxial thin films grown by molecular beam epitaxy on BaF$_{2}$ substrates, hole mediated ferromagnetism is observed in samples with $xgeq0.06$ and the highest $T_mathrm{c}sim7.5,mathrm{K}$ is inferred from an anomalous Hall behavior in Sn$_{0.92}$Mn$_{0.08}$Te. The sizable anomalous Hall angle $sim$0.3 obtained for Sn$_{0.92}$Mn$_{0.08}$Te is one of the greatest reported for magnetic topological materials. The ferromagnetic ordering with perpendicular magnetic anisotropy, complemented by the inception of anomalous Hall effect in the Sn$_{1-x}$Mn$_{x}$Te layers for a thickness commensurate with the decay length of the top and bottom surface states, points at Sn$_{1-x}$Mn$_{x}$Te as a preferential platform for the realization of QAH states in ferromagnetic TCIs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا