ﻻ يوجد ملخص باللغة العربية
Nanodiamonds containing color centers open up many applications in quantum information processing, metrology, and quantum sensing. In particular, silicon vacancy (SiV) centers are prominent candidates as quantum emitters due to their beneficial optical qualities. Here we characterize nanodiamonds produced by a high-pressure high-temperature method without catalyst metals, focusing on two samples with clear SiV signatures. Different growth temperatures and relative content of silicon in the initial compound between the samples altered their nanodiamond size distributions and abundance of SiV centers. Our results show that nanodiamond growth can be controlled and optimized for different applications.
Vacancy centers in diamond have proven to be a viable solid-state platform for quantum coherent opto-electronic applications. Among the variety of vacancy centers, silicon-vacancy (SiV) centers have recently attracted much attention as an inversion-s
The silicon-vacancy centre (SiV) in diamond has interesting vibronic features. We demonstrate that the zero phonon line position can be used to reliably identify the silicon isotope present in a single centre. This is of interest for quantum informat
We demonstrate that silicon-vacancy (SiV) centers in diamond can be used to efficiently generate coherent optical photons with excellent spectral properties. We show that these features are due to the inversion symmetry associated with SiV centers, a
We demonstrate an all-optical thermometer based on an ensemble of silicon-vacancy centers (SiVs) in diamond by utilizing a temperature dependent shift of the SiV optical zero-phonon line transition frequency, $Deltalambda/Delta T= 6.8,mathrm{GHz/K}$.
The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are