ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory

97   0   0.0 ( 0 )
 نشر من قبل Iair Arcavi Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an implementation of the Gehrels et al. (2016) galaxy-targeted strategy for gravitational-wave (GW) follow-up using the Las Cumbres Observatory global network of telescopes. We use the Galaxy List for the Advanced Detector Era (GLADE) galaxy catalog, which we show is complete (with respect to a Schechter function) out to ~300 Mpc for galaxies brighter than the median Schechter function galaxy luminosity. We use a prioritization algorithm to select the galaxies with the highest chance of containing the counterpart given their luminosity, their position, and their distance relative to a GW localization, and in which we are most likely to detect a counterpart given its expected brightness compared to the limiting magnitude of our telescopes. This algorithm can be easily adapted to any expected transient parameters and telescopes. We implemented this strategy during the second Advanced Detector Observing Run (O2) and followed the black hole merger GW170814 and the neutron star merger GW170817. For the latter, we identified an optical kilonova/macronova counterpart thanks to our algorithm selecting the correct host galaxy fifth in its ranked list among 182 galaxies we identified in the Laser Interferometer Gravitational-wave Observatory LIGO-Virgo localization. This also allowed us to obtain some of the earliest observations of the first optical transient ever triggered by a GW detection (as presented in a companion paper).



قيم البحث

اقرأ أيضاً

Las Cumbres Observatory Global Telescope (LCOGT) is a young organization dedicated to time-domain observations at optical and (potentially) near-IR wavelengths. To this end, LCOGT is constructing a world-wide network of telescopes, including the two 2m Faulkes telescopes, as many as 17 x 1m telescopes, and as many as 23 x 40cm telescopes. These telescopes initially will be outfitted for imaging and (excepting the 40cm telescopes) spectroscopy at wavelengths between the atmospheric UV cutoff and the roughly 1-micron limit of silicon detectors. Since the first of LCOGTs 1m telescopes are now being deployed, we lay out here LCOGTs scientific goals and the requirements that these goals place on network architecture and performance, we summarize the networks present and projected level of development, and we describe our expected schedule for completing it. In the bulk of the paper, we describe in detail the technical approaches that we have adopted to attain the desired performance. In particular, we discuss our choices for the number and location of network sites, for the number and sizes of telescopes, for the specifications of the first generation of instruments, for the software that will schedule and control the networks telescopes and reduce and archive its data, and for the structure of the scientific and educational programs for which the network will provide observations.
On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earths crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within $pm 500$ s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a blind injection challenge. With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
Binary neutron stars (BNSs) will spend $simeq 10$ -- 15 minutes in the band of Advanced LIGO and Virgo detectors at design sensitivity. Matched-filtering of gravitational-wave (GW) data could in principle accumulate enough signal-to-noise ratio (SNR) to identify a forthcoming event tens of seconds before the companions collide and merge. Here we report on the design and testing of an early warning gravitational-wave detection pipeline. Early warning alerts can be produced for sources that are at low enough redshift so that a large enough SNR accumulates $sim 10 - 60,rm s$ before merger. We find that about 7% (respectively, 49%) of the total detectable BNS mergers will be detected $60, rm s$ ($10, rm s$) before the merger. About 2% of the total detectable BNS mergers will be detected before merger and localized to within $100, rm text{deg}^2$ (90% credible interval). Coordinated observing by several wide-field telescopes could capture the event seconds before or after the merger. LIGO-Virgo detectors at design sensitivity could facilitate observing at least one event at the onset of merger.
We present an empirical study of contamination in deep, rapid, and wide-field optical follow-up searches of GW sources from aLIGO. We utilize dedicated observations during four nights of imaging with DECam. Our search covered $sim56$ deg$^2$, with tw o visits per night separated by $approx 3$~hours, in $i$- and $z$-band, followed by an additional set of $griz$ images three weeks later to serve as reference images for subtraction, and for the purpose of identifying galaxy and stellar counterparts for any transient sources. We achieve $5sigma$ point-source limiting magnitudes of $i approx 23.5$ and $z approx 22.4$ mag in the coadded single-epoch images. We conduct a search for transient objects that can mimic the $i-z$ color behavior of both red ($i-z > 0.5$~mag) and blue ($i-z < 0$~mag) kilonova emission, finding 11 and 10 contaminants, respectively. Independent of color, we identify 48 transients of interest. Additionally, we leverage the rapid cadence of our observations to search for sources with characteristic timescales of $approx1$ day and $approx3$ hours, finding no potential contaminants. We assess the efficiency of our pipeline and search methodology with injected point sources, finding that we are 90% (60%) efficient when searching for red (blue) kilonova-like sources to a limiting magnitude of $i lesssim 22.5$ mag. Applying these efficiencies, we derive sky rates for kilonova contaminants in the red and blue regimes of $mathcal{R}_{rm red} approx 0.16$ deg$^{-2}$ and $mathcal{R}_{rm blue} approx 0.80$ deg$^{-2}$. The total contamination rate, independent of color, is $mathcal{R}_{rm all} approx 1.79$ deg$^{-2}$. We compare our derived results to optical follow-up searches of the GW events GW150914 and GW151226 and comment on the outlook for GW follow-up searches as additional GW detectors (e.g., KAGRA, LIGO India) come online in the next decade.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا