ﻻ يوجد ملخص باللغة العربية
We present an implementation of the Gehrels et al. (2016) galaxy-targeted strategy for gravitational-wave (GW) follow-up using the Las Cumbres Observatory global network of telescopes. We use the Galaxy List for the Advanced Detector Era (GLADE) galaxy catalog, which we show is complete (with respect to a Schechter function) out to ~300 Mpc for galaxies brighter than the median Schechter function galaxy luminosity. We use a prioritization algorithm to select the galaxies with the highest chance of containing the counterpart given their luminosity, their position, and their distance relative to a GW localization, and in which we are most likely to detect a counterpart given its expected brightness compared to the limiting magnitude of our telescopes. This algorithm can be easily adapted to any expected transient parameters and telescopes. We implemented this strategy during the second Advanced Detector Observing Run (O2) and followed the black hole merger GW170814 and the neutron star merger GW170817. For the latter, we identified an optical kilonova/macronova counterpart thanks to our algorithm selecting the correct host galaxy fifth in its ranked list among 182 galaxies we identified in the Laser Interferometer Gravitational-wave Observatory LIGO-Virgo localization. This also allowed us to obtain some of the earliest observations of the first optical transient ever triggered by a GW detection (as presented in a companion paper).
Las Cumbres Observatory Global Telescope (LCOGT) is a young organization dedicated to time-domain observations at optical and (potentially) near-IR wavelengths. To this end, LCOGT is constructing a world-wide network of telescopes, including the two
On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors
Binary neutron stars (BNSs) will spend $simeq 10$ -- 15 minutes in the band of Advanced LIGO and Virgo detectors at design sensitivity. Matched-filtering of gravitational-wave (GW) data could in principle accumulate enough signal-to-noise ratio (SNR)
We present an empirical study of contamination in deep, rapid, and wide-field optical follow-up searches of GW sources from aLIGO. We utilize dedicated observations during four nights of imaging with DECam. Our search covered $sim56$ deg$^2$, with tw