ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving shortcuts to non-Hermitian adiabaticity for fast population transfer in open quantum systems

192   0   0.0 ( 0 )
 نشر من قبل Yehong Chen Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is still a challenge to experimentally realize shortcuts to adiabaticity (STA) for a non-Hermitian quantum system since a non-Hermitian quantum systems counterdiabatic driving Hamiltonian contains some unrealizable auxiliary control fields. In this paper, we relax the strict condition in constructing STA and propose a method to redesign a realizable supplementary Hamiltonian to construct non-Hermitian STA. The redesigned supplementary Hamiltonian can be eithersymmetric or asymmetric. For the sake of clearness, we apply this method to an Allen-Eberly model as an example to verify the validity of the optimized non-Hermitian STA. The numerical simulation demonstrates that a ultrafast population inversion could be realized in a two-level non-Hermitian system.



قيم البحث

اقرأ أيضاً

Shortcuts to adiabaticity (STA) are powerful quantum control methods, allowing quick evolution into target states of otherwise slow adiabatic dynamics. Such methods have widespread applications in quantum technologies, and various STA protocols have been demonstrated in closed systems. However, realizing STA for open quantum systems has presented a greater challenge, due to complex controls required in existing proposals. Here we present the first experimental demonstration of STA for open quantum systems, using a superconducting circuit QED system consisting of two coupled bosonic oscillators and a transmon qubit. By applying a counterdiabatic driving pulse, we reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns. In addition, we propose and implement an optimal control protocol to achieve fast and qubit-unconditional equilibrium of multiple lossy modes. Our results pave the way for accelerating dynamics of open quantum systems and have potential applications in designing fast open-system protocols of physical and interdisciplinary interest, such as accelerating bioengineering and chemical reaction dynamics.
A universal scheme is introduced to speed up the dynamics of a driven open quantum system along a prescribed trajectory of interest. This framework generalizes counterdiabatic driving to open quantum processes. Shortcuts to adiabaticity designed in t his fashion can be implemented in two alternative physical scenarios: one characterized by the presence of balanced gain and loss, the other involves non-Markovian dynamics with time-dependent Lindblad operators. As an illustration, we engineer superadiabatic cooling, heating, and isothermal strokes for a two-level system, and provide a protocol for the fast thermalization of a quantum oscillator.
87 - S. L. Wu , W. Ma , X. L. Huang 2021
Pure-state inverse engineering among the schemes of shortcuts to adiabaticity is a widespread utility in applications to quantum computation and quantum simulation. While in principle it can realise the fast control of quantum systems with high fidel ity, in practice this fast control is severely hindered by infinite energy gaps and impractical control fields. To circumvent this problem, we propose a scheme of shortcuts to adiabaticity of mixed state based on the dynamical invariant of open quantum system. Our scheme can drives a steady state to a target steady state of the open system by a controlled Liouvillian that possesses the same form as the reference (original) one. We apply this scheme to stimulated Raman adiabatic passage (STIRAP) and find that an almost perfect population transfer can be obtained. The experimental observation with currently available parameters for the nitrogen-vacancy (NV) center in diamond is suggested and discussed.
126 - Hao Zhang , Xue-Ke Song , Qing Ai 2018
Adiabatic quantum control is a very important approach for quantum physics and quantum information processing. It holds the advantage with robustness to experimental imperfections but accumulates more decoherence due to the long evolution time. Here, we propose a universal protocol for fast and robust quantum control in multimode interactions of a quantum system by using shortcuts to adiabaticity. The results show this protocol can speed up the evolution of a multimode quantum system effectively, and it can also keep the robustness very good while adiabatic quantum control processes cannot. We apply this protocol for the quantum state transfer in quantum information processing in the photon-phonon interactions in an optomechanical system, showing a perfect result. These good features make this protocol have the capability of improving effectively the feasibility of the practical applications of multimode interactions in quantum information processing in experiment.
284 - Yue Ban , Xi Chen , 2018
Rapid and efficient preparation, manipulation and transfer of quantum states through an array of quantum dots (QDs) is a demanding requisite task for quantum information processing and quantum computation in solid-state physics. Conventional adiabati c protocols, as coherent transfer by adiabatic passage (CTAP) and its variations, provide slow transfer prone to decoherence, which could lower the fidelity to some extent. To achieve the robustness against decoherence, we propose a protocol of speeding up the adiabatic charge transfer in multi-QD systems, sharing the concept of Shortcuts to Adiabaticity (STA). We first apply the STA techniques, including the counterdiabatic driving and inverse engineering, to speed up the direct (long range) transfer between edge dots in triple QDs. Then, we extend our analysis to a multi-dot system. We show how by implementing the modified pulses, fast adiabatic-like charge transport between the outer dots can be eventually achieved without populating intermediate dots. We discuss as well the dependence of the transfer fidelity on the operation time in the presence of dephasing. The proposed protocols for accelerating adiabatic charge transfer directly between the outer dots in a QD array offers a robust mechanism for quantum information processing, by minimizing decoherence and relaxation processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا