ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast and robust quantum control for multimode interactions by using shortcuts to adiabaticity

127   0   0.0 ( 0 )
 نشر من قبل Fu-Guo Deng
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Adiabatic quantum control is a very important approach for quantum physics and quantum information processing. It holds the advantage with robustness to experimental imperfections but accumulates more decoherence due to the long evolution time. Here, we propose a universal protocol for fast and robust quantum control in multimode interactions of a quantum system by using shortcuts to adiabaticity. The results show this protocol can speed up the evolution of a multimode quantum system effectively, and it can also keep the robustness very good while adiabatic quantum control processes cannot. We apply this protocol for the quantum state transfer in quantum information processing in the photon-phonon interactions in an optomechanical system, showing a perfect result. These good features make this protocol have the capability of improving effectively the feasibility of the practical applications of multimode interactions in quantum information processing in experiment.



قيم البحث

اقرأ أيضاً

Fast and robust quantum control protocols are often based on an idealised approximate description of the relevant quantum system. While this may provide a performance which is close to optimal, improvements can be made by incorporating elements of th e full system representation. We propose a new technique for such scenarios, called enhanced shortcuts to adiabaticity (eSTA). The eSTA method works for previously intractable Hamiltonians by providing an analytical correction to existing STA protocols. This correction can be easily calculated and the resulting protocols are outside the class of STA schemes. We demonstrate the effectiveness of the method for three distinct cases: manipulation of an internal atomic state beyond the rotating wave approximation, transport of a neutral atom in an optical Gaussian trap and transport of two trapped ions in an anharmonic trap.
164 - S. Iba~nez , Xi Chen , 2012
Different techniques to speed up quantum adiabatic processes are currently being explored for applications in atomic, molecular and optical physics, such as transport, cooling and expansions, wavepacket splitting, or internal state control. Here we e xamine the capabilities of superadiabatic iterations to produce a sequence of shortcuts to adiabaticity. The general formalism is worked out as well as examples for population inversion in a two-level system.
Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the energy cost of the shortcut by the energy consumption of the system enlarged by including the control device. A mechani cal model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption are possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and recovered by perfect regenerative braking.
It is still a challenge to experimentally realize shortcuts to adiabaticity (STA) for a non-Hermitian quantum system since a non-Hermitian quantum systems counterdiabatic driving Hamiltonian contains some unrealizable auxiliary control fields. In thi s paper, we relax the strict condition in constructing STA and propose a method to redesign a realizable supplementary Hamiltonian to construct non-Hermitian STA. The redesigned supplementary Hamiltonian can be eithersymmetric or asymmetric. For the sake of clearness, we apply this method to an Allen-Eberly model as an example to verify the validity of the optimized non-Hermitian STA. The numerical simulation demonstrates that a ultrafast population inversion could be realized in a two-level non-Hermitian system.
We consider fast high-fidelity quantum control by using a shortcut to adiabaticity (STA) technique and optimal control theory (OCT). Three specific examples, including expansion of cold atoms from the harmonic trap, atomic transport by moving harmoni c trap, and spin dynamics in the presence of dissipation, are explicitly detailed. Using OCT as a qualitative guide, we demonstrate how STA protocols designed from inverse engineering method, can approach with very high precision optimal solutions built about physical constraints, by a proper choice of the interpolation function and with a very reduced number of adjustable parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا