ترغب بنشر مسار تعليمي؟ اضغط هنا

Microwave SQUID Multiplexer demonstration for Cosmic Microwave Background Imagers

57   0   0.0 ( 0 )
 نشر من قبل Bradley Dober Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Key performance characteristics are demonstrated for the microwave SQUID multiplexer ($mu$MUX) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the $mu$MUX produces a white, input referred current noise level of 29~pA$/sqrt{mathrm{Hz}}$ at -77~dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98~pA$/sqrt{mathrm{Hz}}$ in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density exhibits a white spectrum at low frequencies ($sim$~100~mHz), which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the $mu$MUX as a viable readout technique for future CMB imaging instruments.



قيم البحث

اقرأ أيضاً

350 - B. Dober , Z. Ahmed , K. Arnold 2020
A microwave SQUID multiplexer ($mu$MUX) has been optimized for coupling to large arrays of superconducting transition-edge sensor (TES) bolometers. We present the scalable cryogenic multiplexer chip design in a 1820-channel multiplexer configuration for the 4-8 GHz rf band. The key metrics of yield, sensitivity, and crosstalk are determined through measurements of 455 readout channels, which span 4-5 GHz. The median white-noise level is 45 pA/$sqrt{textrm{Hz}}$, evaluated at 2 Hz, with a 1/f knee $leq$ 20 mHz after common-mode subtraction. The white-noise level decreases the sensitivity of a TES bolometer optimized for detection of the cosmic microwave background at 150 GHz by only 3%. The measured crosstalk between any channel pair is $leq$ 0.3%.
A technological milestone for experiments employing Transition Edge Sensor (TES) bolometers operating at sub-kelvin temperature is the deployment of detector arrays with 100s--1000s of bolometers. One key technology for such arrays is readout multipl exing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ~MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with Superconducting Quantum Interference Devices (SQUIDs) operating at 4 K. Room-temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.
Delensing is an increasingly important technique to reverse the gravitational lensing of the cosmic microwave background (CMB) and thus reveal primordial signals the lensing may obscure. We present a first demonstration of delensing on Planck tempera ture maps using the cosmic infrared background (CIB). Reversing the lensing deflections in Planck CMB temperature maps using a linear combination of the 545 and 857GHz maps as a lensing tracer, we find that the lensing effects in the temperature power spectrum are reduced in a manner consistent with theoretical expectations. In particular, the characteristic sharpening of the acoustic peaks of the temperature power spectrum resulting from successful delensing is detected at a significance of 16$rm{sigma}$, with an amplitude of $A_{rm{delens}} = 1.12 pm 0.07$ relative to the expected value of unity. This first demonstration on data of CIB delensing, and of delensing techniques in general, is significant because lensing removal will soon be essential for achieving high-precision constraints on inflationary B-mode polarization.
We present the design and performance of broadband and tunable infrared-blocking filters for millimeter and sub-millimeter astronomy composed of small scattering particles embedded in an aerogel substrate. The ultra-low-density (typically < 150 mg/cm ^3) aerogel substrate provides an index of refraction as low as 1.05, removing the need for anti-reflection coatings and allowing for broadband operation from DC to above 1 THz. The size distribution of the scattering particles can be tuned to provide a variable cutoff frequency. Aerogel filters with embedded high-resistivity silicon powder are being produced at 40-cm diameter to enable large-aperture cryogenic receivers for cosmic microwave background polarimeters, which require large arrays of sub-Kelvin detectors in their search for the signature of an inflationary gravitational-wave background.
213 - D. Herranz , P. Vielva 2011
We aim to present a tutorial on the detection, parameter estimation and statistical analysis of compact sources (far galaxies, galaxy clusters and Galactic dense emission regions) in cosmic microwave background observations. The topic is of great rel evance for current and future cosmic microwave background missions because the presence of compact sources in the data introduces very significant biases in the determination of the cosmological parameters that determine the energy contain, origin and evolution of the universe and because compact sources themselves provide us with important information about the large scale structure of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا