ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency Multiplexed SQUID Readout of Large Bolometer Arrays for Cosmic Microwave Background Measurements

186   0   0.0 ( 0 )
 نشر من قبل Matt Dobbs
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A technological milestone for experiments employing Transition Edge Sensor (TES) bolometers operating at sub-kelvin temperature is the deployment of detector arrays with 100s--1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ~MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with Superconducting Quantum Interference Devices (SQUIDs) operating at 4 K. Room-temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

قيم البحث

اقرأ أيضاً

The POLARBEAR-2 CosmicMicrowave Background (CMB) experiment aims to observe B-mode polarization with high sensitivity to explore gravitational lensing of CMB and inflationary gravitational waves. POLARBEAR-2 is an upgraded experiment based on POLARBE AR-1, which had first light in January 2012. For POLARBEAR-2, we will build a receiver that has 7,588 Transition Edge Sensor (TES) bolometers coupled to two-band (95 and 150 GHz) polarization-sensitive antennas. For the large arrays readout, we employ digital frequency-domain multiplexing and multiplex 32 bolometers through a single superconducting quantum interference device (SQUID). An 8-bolometer frequency-domain multiplexing readout has been deployed on POLARBEAR-1 experiment. Extending that architecture to 32 bolometers requires an increase in the bandwidth of the SQUID electronics to 3 MHz. To achieve this increase in bandwidth, we use Digital Active Nulling (DAN) on the digital frequency multiplexing platform. In this paper, we present requirements and improvements on parasitic inductance and resistance of cryogenic wiring and capacitors used for modulating bolometers. These components are problematic above 1 MHz. We also show that our system is able to bias a bolometer in its superconducting transition at 3 MHz.
133 - T. Lanting , M. Dobbs , H. Spieler 2009
We have designed and demonstrated a Superconducting Quantum Interference Device (SQUID) array linearized with cryogenic feedback. To achieve the necessary loop gain a 300 element series array SQUID is constructed from three monolithic 100-element ser ies arrays. A feedback resistor completes the loop from the SQUID output to the input coil. The short feedback path of this Linearized SQUID Array (LISA) allows for a substantially larger flux-locked loop bandwidth as compared to a SQUID flux-locked loop that includes a room temperature amplifier. The bandwidth, linearity, noise performance, and dynamic range of the LISA are sufficient for its use in our target application: the multiplexed readout of transition-edge sensor bolometers.
Frequency-domain multiplexing (fMux) is an established technique for the readout of large arrays of transition edge sensor (TES) bolometers. Each TES in a multiplexing module has a unique AC voltage bias that is selected by a resonant filter. This sc heme enables the operation and readout of multiple bolometers on a single pair of wires, reducing thermal loading onto sub-Kelvin stages. The current receiver on the South Pole Telescope, SPT-3G, uses a 68x fMux system to operate its large-format camera of $sim$16,000 TES bolometers. We present here the successful implementation and performance of the SPT-3G readout as measured on-sky. Characterization of the noise reveals a median pair-differenced 1/f knee frequency of 33 mHz, indicating that low-frequency noise in the readout will not limit SPT-3Gs measurements of sky power on large angular scales. Measurements also show that the median readout white noise level in each of the SPT-3G observing bands is below the expectation for photon noise, demonstrating that SPT-3G is operating in the photon-noise-dominated regime.
Key performance characteristics are demonstrated for the microwave SQUID multiplexer ($mu$MUX) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstrati on, we show that the $mu$MUX produces a white, input referred current noise level of 29~pA$/sqrt{mathrm{Hz}}$ at -77~dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98~pA$/sqrt{mathrm{Hz}}$ in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density exhibits a white spectrum at low frequencies ($sim$~100~mHz), which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the $mu$MUX as a viable readout technique for future CMB imaging instruments.
The Simons Observatory (SO) is an upcoming polarization-sensitive Cosmic Microwave Background (CMB) experiment on the Cerro Toco Plateau (Chile) with large overlap with other optical and infrared surveys (e.g., DESI, LSST, HSC). To enable the readout of bigO(10,000) detectors in each of the four telescopes of SO, we will employ the microwave SQUID multiplexing technology. With a targeted multiplexing factor of bigO{(1,000)}, microwave SQUID multiplexing has never been deployed on the scale needed for SO. Here we present the design of the cryogenic coaxial cable and RF component chain that connects room temperature readout electronics to superconducting resonators that are coupled to Transition Edge Sensor bolometers operating at sub-Kelvin temperatures. We describe design considerations including cryogenic RF component selection, system linearity, noise, and thermal power dissipation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا