ترغب بنشر مسار تعليمي؟ اضغط هنا

Harvested Power Maximization in QoS-Constrained MIMO SWIPT with Generic RF Harvesting Model

91   0   0.0 ( 0 )
 نشر من قبل George Alexandropoulos
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of maximizing the harvested power in Multiple Input Multiple Output (MIMO) Simultaneous Wireless Information and Power Transfer (SWIPT) systems with power splitting reception. Different from recently proposed designs, we target with our novel problem formulation at the jointly optimal transmit precoding and receive uniform power splitting (UPS) ratio maximizing the harvested power, while ensuring that the Quality-of-Service (QoS) requirement of the MIMO link is satisfied. We assume generic practical Radio Frequency (RF) Energy Harvesting (EH) receive operation that results in a non-convex optimization problem for the design parameters, which we then solve optimally after formulating it in an equivalent generalized convex form. Our representative results including comparisons of achievable EH gains with benchmark schemes provide key insights on various system parameters.

قيم البحث

اقرأ أيضاً

In this paper, we study a multi-user multiple-input-multiple-output secrecy simultaneous wireless information and power transfer (SWIPT) channel which consists of one transmitter, one cooperative jammer (CJ), multiple energy receivers (potential eave sdroppers, ERs), and multiple co-located receivers (CRs). We exploit the dual of artificial noise (AN) generation for facilitating efficient wireless energy transfer and secure transmission. Our aim is to maximize the minimum harvested energy among ERs and CRs subject to secrecy rate constraints for each CR and total transmit power constraint. By incorporating norm-bounded channel uncertainty model, we propose a iterative algorithm based on sequential parametric convex approximation to find a near-optimal solution. Finally, simulation results are presented to validate the performance of the proposed algorithm outperforms that of the conventional AN-aided scheme and CJ-aided scheme.
In this paper, we investigate the performance of simultaneous wireless information and power transfer (SWIPT) in a point-to-point system, adopting practical $M$-ary modulation. We take into account the fact that the receivers radio-frequency (RF) ene rgy harvesting circuit can only harvest energy when the received signal power is greater than a certain sensitivity level. For both power-splitting (PS) and time-switching (TS) schemes, we derive the energy harvesting performance as well as the information decoding performance for the Nakagami-$m$ fading channel. We also analyze the performance tradeoff between energy harvesting and information decoding by studying an optimization problem, which maximizes the information decoding performance and satisfies a constraint on the minimum harvested energy. Our analysis shows that (i) for the PS scheme, modulations with high peak-to-average power ratio achieve better energy harvesting performance, (ii) for the TS scheme, it is desirable to concentrate the power for wireless power transfer in order to minimize the non-harvested energy caused by the RF energy harvesting sensitivity level, and (iii) channel fading is beneficial for energy harvesting in both PS and TS schemes.
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix , and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem, on the other hand, is shown to be a single- variable optimization that can be solved by one-dimensional (1- D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. The work is then extended to the imperfect channel state information case with norm-bounded channel errors. Furthermore, tightness of the relaxation for the proposed schemes are validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D but with much lower complexity.
This paper considers two base stations (BSs) powered by renewable energy serving two users cooperatively. With different BS energy arrival rates, a fractional joint transmission (JT) strategy is proposed, which divides each transmission frame into tw o subframes. In the first subframe, one BS keeps silent to store energy while the other transmits data, and then they perform zero-forcing JT (ZF-JT) in the second subframe. We consider the average sum-rate maximization problem by optimizing the energy allocation and the time fraction of ZF-JT in two steps. Firstly, the sum-rate maximization for given energy budget in each frame is analyzed. We prove that the optimal transmit power can be derived in closed-form, and the optimal time fraction can be found via bi-section search. Secondly, approximate dynamic programming (DP) algorithm is introduced to determine the energy allocation among frames. We adopt a linear approximation with the features associated with system states, and determine the weights of features by simulation. We also operate the approximation several times with random initial policy, named as policy exploration, to broaden the policy search range. Numerical results show that the proposed fractional JT greatly improves the performance. Also, appropriate policy exploration is shown to perform close to the optimal.
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix , and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem is shown to be a single-variable optimization that can be solved by one-dimensional (1-D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. Furthermore, tightness of the relaxation for the 1-D search method is validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D search method but with much lower complexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا