ترغب بنشر مسار تعليمي؟ اضغط هنا

Beamforming and Power Splitting Designs for AN-aided Secure Multi-user MIMO SWIPT Systems

126   0   0.0 ( 0 )
 نشر من قبل Zheng Chu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix, and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem, on the other hand, is shown to be a single- variable optimization that can be solved by one-dimensional (1- D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. The work is then extended to the imperfect channel state information case with norm-bounded channel errors. Furthermore, tightness of the relaxation for the proposed schemes are validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D but with much lower complexity.



قيم البحث

اقرأ أيضاً

In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix , and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem is shown to be a single-variable optimization that can be solved by one-dimensional (1-D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. Furthermore, tightness of the relaxation for the 1-D search method is validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D search method but with much lower complexity.
116 - Gui Zhou , Cunhua Pan , Hong Ren 2020
In this paper, intelligent reflecting surface (IRS) is proposed to enhance the physical layer security in the Rician fading channel where the angular direction of the eavesdropper is aligned with a legitimate user. In this scenario, we consider a two -phase communication system under the active attacks and passive eavesdropping. Particularly, in the first phase, the base station avoids direct transmission to the attacked user. While, in the second phase, other users cooperate to forward signals to the attacked user with the help of IRS and energy harvesting technology. Under the active attacks, we investigate an outage constrained beamforming design problem under the statistical cascaded channel error model, which is solved by using the Bernstein-type inequality. As for the passive eavesdropping, an average secrecy rate maximization problem is formulated, which is addressed by a low complexity algorithm. Numerical results show that the negative effect of the eavesdroppers channel error is greater than that of the legitimate user.
In this paper, we study a multi-user multiple-input-multiple-output secrecy simultaneous wireless information and power transfer (SWIPT) channel which consists of one transmitter, one cooperative jammer (CJ), multiple energy receivers (potential eave sdroppers, ERs), and multiple co-located receivers (CRs). We exploit the dual of artificial noise (AN) generation for facilitating efficient wireless energy transfer and secure transmission. Our aim is to maximize the minimum harvested energy among ERs and CRs subject to secrecy rate constraints for each CR and total transmit power constraint. By incorporating norm-bounded channel uncertainty model, we propose a iterative algorithm based on sequential parametric convex approximation to find a near-optimal solution. Finally, simulation results are presented to validate the performance of the proposed algorithm outperforms that of the conventional AN-aided scheme and CJ-aided scheme.
79 - Xiaobo Zhou , Jun Li , Feng Shu 2018
Secure wireless information and power transfer based on directional modulation is conceived for amplify-and-forward (AF) relaying networks. Explicitly, we first formulate a secrecy rate maximization (SRM) problem, which can be decomposed into a twin- level optimization problem and solved by a one-dimensional (1D) search and semidefinite relaxation (SDR) technique. Then in order to reduce the search complexity, we formulate an optimization problem based on maximizing the signal-to-leakage-AN-noise-ratio (Max-SLANR) criterion, and transform it into a SDR problem. Additionally, the relaxation is proved to be tight according to the classic Karush-Kuhn-Tucker (KKT) conditions. Finally, to reduce the computational complexity, a successive convex approximation (SCA) scheme is proposed to find a near-optimal solution. The complexity of the SCA scheme is much lower than that of the SRM and the Max-SLANR schemes. Simulation results demonstrate that the performance of the SCA scheme is very close to that of the SRM scheme in terms of its secrecy rate and bit error rate (BER), but much better than that of the zero forcing (ZF) scheme.
192 - Chen He , Xie Xie , Kun Yang 2021
This paper considers an intelligent reflecting surface (IRS) assisted multi-input multi-output (MIMO) power splitting (PS) based simultaneous wireless information and power transfer (SWIPT) system with multiple PS receivers (PSRs). The objective is t o maximize the achievable data rate of the system by jointly optimizing the PS ratios at the PSRs, the active transmit beamforming (ATB) at the access point (AP), and the passive reflective beamforming (PRB) at the IRS, while the constraints on maximum transmission power at the AP, the reflective phase shift of each element at the IRS, the individual minimum harvested energy requirement of each PSR, and the domain of PS ratio of each PSR are all satisfied. For this unsolved problem, however, since the optimization variables are intricately coupled and the constraints are conflicting, the formulated problem is non-convex, and cannot be addressed by employing exist approaches directly. To this end, we propose a joint optimization framework to solve this problem. Particularly, we reformulate it as an equivalent form by employing the Lagrangian dual transform and the fractional programming transform, and decompose the transformed problem into several sub-problems. Then, we propose an alternate optimization algorithm by capitalizing on the dual sub-gradient method, the successive convex approximation method, and the penalty-based majorization-minimization approach, to solve the sub-problems iteratively, and obtain the optimal solutions in nearly closed-forms. Numerical simulation results verify the effectiveness of the IRS in SWIPT system and indicate that the proposed algorithm offers a substantial performance gain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا