ترغب بنشر مسار تعليمي؟ اضغط هنا

On-demand semiconductor source of 780 nm single photons with controlled temporal wave packets

507   0   0.0 ( 0 )
 نشر من قبل Lucas B\\'eguin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at $780,$nm are generated on-demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multi-photon emission probability ($g^{2}(0)sim,0.10-0.15$) at a generation rate up to $10,$MHz. We observe Raman photons with linewidths as low as $200,$MHz, narrow compared to the $1.1,$GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.

قيم البحث

اقرأ أيضاً

69 - Hui Wang , Hai Hu , T.-H. Chung 2019
An outstanding goal in quantum optics and scalable photonic quantum technology is to develop a source that each time emits one and only one entangled photon pair with simultaneously high entanglement fidelity, extraction efficiency, and photon indist inguishability. By coherent two-photon excitation of a single InGaAs quantum dot coupled to a circular Bragg grating bullseye cavity with broadband high Purcell factor up to 11.3, we generate entangled photon pairs with a state fidelity of 0.90(1), pair generation rate of 0.59(1), pair extraction efficiency of 0.62(6), and photon indistinguishability of 0.90(1) simultaneously. Our work will open up many applications in high-efficiency multi-photon experiments and solid-state quantum repeaters.
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In this work, we demonstrate such a source based on a strongly interacting Rydberg system. The large optical nonlinearities in a blockaded Rydberg ensemble convert coherent light into a single-collective excitation that can be coherently retrieved as a quantum field. We observe a single-transverse-mode efficiency up to 0.18(2), $g^{(2)}=2.0(1.5)times10^{-4}$, and indistinguishability of 0.982(7), making this system promising for scalable quantum information applications. Accounting for losses, we infer a generation probability up to 0.40(4). Furthermore, we investigate the effects of contaminant Rydberg excitations on the source efficiency. Finally, we introduce metrics to benchmark the performance of on-demand single-photon sources.
We propose two different setups to generate single photons on demand using an atom in front of a mirror, along with either a beam-splitter or a tunable coupling. We show that photon generation efficiency ~99% is straightforward to achieve. The propos ed schemes are simple and easily tunable in frequency. The operation is relatively insensitive to dephasing and can be easily extended to generate correlated pairs of photons. They can also in principle be used to generate any photonic qubit of the form $mu |0 rangle + u |1rangle$ in arbitrary wave-packets, making them very attractive for quantum communication applications.
With propagating through a dispersive medium, the temporal-spectral profile of laser pulses should be inevitably modified. Although such dispersion effect has been well studied in classical optics, its effect on a single-photon wave-packet, i.e., the matter wave of a single-photon, has not yet been entirely revealed. In this paper, we investigate the effect of dispersion on indistinguishability of single-photon wave-packets through the Hong-Ou-Mandel (HOM) interference. By dispersively manipulating two indistinguishable single-photon wave-packets before interfering with each other, we observe that the difference of the second-order dispersion between two optical paths of the HOM interferometer can be mapped to the interference curve, indicating that (1) with the same amount of dispersion effect in both paths, the HOM interference curve must be only determined by the intrinsic indistinguishability between the wave-packets, i.e., dispersion cancellation due to the indistinguishability between Feynman paths; (2) unbalanced dispersion effect in two paths cannot be cancelled and will broaden the interference curve thus providing a way to measure the second-order dispersion coefficient. Our results suggest a more comprehensive understanding of the single-photon wave-packet and pave ways to explore further applications of the HOM interference.
We prepare heralded single photons from a photon pair source based on non-degenerate four-wave mixing in a cold atomic ensemble via a cascade decay scheme. Their statistics shows strong antibunching with g(2)(0) < 0.03, indicating a near single photo n character. In an optical homodyne experiment, we directly measure the temporal envelope of these photons and find, depending on the heralding scheme, an exponentially decaying or rising profile. The rising envelope will be useful for efficient interaction between single photons and microscopic systems like single atoms and molecules. At the same time, their observation illustrates the breakdown of a realistic interpretation of the heralding process in terms of defining an initial condition of a physical system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا