ﻻ يوجد ملخص باللغة العربية
We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at $780,$nm are generated on-demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multi-photon emission probability ($g^{2}(0)sim,0.10-0.15$) at a generation rate up to $10,$MHz. We observe Raman photons with linewidths as low as $200,$MHz, narrow compared to the $1.1,$GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.
An outstanding goal in quantum optics and scalable photonic quantum technology is to develop a source that each time emits one and only one entangled photon pair with simultaneously high entanglement fidelity, extraction efficiency, and photon indist
Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In
We propose two different setups to generate single photons on demand using an atom in front of a mirror, along with either a beam-splitter or a tunable coupling. We show that photon generation efficiency ~99% is straightforward to achieve. The propos
With propagating through a dispersive medium, the temporal-spectral profile of laser pulses should be inevitably modified. Although such dispersion effect has been well studied in classical optics, its effect on a single-photon wave-packet, i.e., the
We prepare heralded single photons from a photon pair source based on non-degenerate four-wave mixing in a cold atomic ensemble via a cascade decay scheme. Their statistics shows strong antibunching with g(2)(0) < 0.03, indicating a near single photo