ترغب بنشر مسار تعليمي؟ اضغط هنا

Counterintuitive temporal shape of single photons

60   0   0.0 ( 0 )
 نشر من قبل Christian Kurtsiefer
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prepare heralded single photons from a photon pair source based on non-degenerate four-wave mixing in a cold atomic ensemble via a cascade decay scheme. Their statistics shows strong antibunching with g(2)(0) < 0.03, indicating a near single photon character. In an optical homodyne experiment, we directly measure the temporal envelope of these photons and find, depending on the heralding scheme, an exponentially decaying or rising profile. The rising envelope will be useful for efficient interaction between single photons and microscopic systems like single atoms and molecules. At the same time, their observation illustrates the breakdown of a realistic interpretation of the heralding process in terms of defining an initial condition of a physical system.

قيم البحث

اقرأ أيضاً

Efficient, high rate photon sources with high single photon purity are essential ingredients for quantum technologies. Single photon sources based on solid state emitters such as quantum dots are very advantageous for integrated photonic circuits, bu t they can suffer from a high two-photon emission probability, which in cases of non-cryogenic environment cannot be spectrally filtered. Here we propose two temporal purification-by-heralding methods for using a two photon emission process to yield highly pure and efficient single photon emission, bypassing the inherent problem of spectrally overlapping bi-photon emission. We experimentally demonstrate their feasibility on the emission from a single nanocrystal quantum dot, exhibiting single photon purities exceeding 99.5%, without a significant loss of single photon efficiency. These methods can be applied for any indeterministic source of spectrally broadband photon pairs.
We derive the explicit analytical form of the time-dependent coupling parameter to an external field for perfect absorption of traveling single photon fields with arbitrary temporal profiles by a tunable single input-output open quantum system, which can be realized as either a single qubit or single resonator system. However, the time-dependent coupling parameter for perfect absorption has a singularity at $t=0$ and constraints on real systems prohibit a faithful physical realization of the perfect absorber. A numerical example is included to illustrate the absorbers performance under practical limitations on the coupling strength.
Photonic qubits constitute a leading platform to disruptive quantum technologies due to their unique low-noise properties. The cost of the photonic approach is the non-deterministic nature of many of the processes, including single-photon generation, which arises from parametric sources and negligible interaction between photons. Active temporal multiplexing - repeating a generation process in time and rerouting to single modes using an optical switching network - is a promising approach to overcome this challenge and will likely be essential for large-scale applications with greatly reduced resource complexity and system sizes. Requirements include the precise synchronization of a system of low-loss switches, delay lines, fast photon detectors, and feed-forward. Here we demonstrate temporal multiplexing of 8 bins from a double-passed heralded photon source and observe an increase in the heralding and heralded photon rates. This system points the way to harnessing temporal multiplexing in quantum technologies, from single-photon sources to large-scale computation.
We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at $780,$nm are generated on-demand with tailored temporal profiles of durations ex ceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multi-photon emission probability ($g^{2}(0)sim,0.10-0.15$) at a generation rate up to $10,$MHz. We observe Raman photons with linewidths as low as $200,$MHz, narrow compared to the $1.1,$GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.
107 - F. W. Sun , C. W. Wong 2009
The indistinguishability of independent single photons is presented by decomposing the single photon pulse into the mixed state of different transform limited pulses. The entanglement between single photons and outer environment or other photons indu ces the distribution of the center frequencies of those transform limited pulses and makes photons distinguishable. Only the single photons with the same transform limited form are indistinguishable. In details, the indistinguishability of single photons from the solid-state quantum emitter and spontaneous parametric down conversion is examined with two-photon Hong-Ou-Mandel interferometer. Moreover, experimental methods to enhance the indistinguishability are discussed, where the usage of spectral filter is highlighted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا