ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Period Coordinated Management of Electric Vehicles in Zonal Power Markets: A Convex Relaxation Approach

48   0   0.0 ( 0 )
 نشر من قبل arXiv Admin
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, developments in plug in hybrid electric vehicles have provided various environmental and economic advantages. In the future smart grids, electric vehicles are seen as an important means of transportation to reduce greenhouse gas emissions. One of the main issues regarding to this sort of vehicles is managing their charging time to prevent high peak loads over time. Deploying advanced metering and automatic chargers can be a practical way not only for the vehicle owners to manage their energy consumption, but also for the utilities to manage the electricity load during the day by shifting the charging loads to the off-peak periods. Additionally, an efficient charging schedule can reduce the users electricity bill cost. In this paper we propose a new coordinated multi-period management model for electric vehicles charging scheduling based on multi-objective approach, aiming at optimizing customers charging cost. In the proposed method, a stochastic model is given for starting time of charging, which makes the method a practical tool for simulating the vehicle owners charging behavior effectively. In order to verify the effectiveness of the proposed method, two market policies are used as case studies. The computation results can be used to evaluate the impact of electric vehicles scheduling on economic performance of smart grid.

قيم البحث

اقرأ أيضاً

147 - Zhe Yu , Yunjian Xu , Lang Tong 2016
The successful launch of electric vehicles (EVs) depends critically on the availability of convenient and economic charging facilities. The problem of scheduling of large-scale charging of EVs by a service provider is considered. A Markov decision pr ocess model is introduced in which EVs arrive randomly at a charging facility with random demand and completion deadlines. The service provider faces random charging costs, convex non-completion penalties, and a peak power constraint that limits the maximum number of simultaneous activation of EV chargers. Formulated as a restless multi-armed bandit problem, the EV charging problem is shown to be indexable. A closed-form expression of the Whittles index is obtained for the case when the charging costs are constant. The Whittles index policy, however, is not optimal in general. An enhancement of the Whittles index policy based on spatial interchange according to the less laxity and longer processing time principle is presented. The proposed policy outperforms existing charging algorithms, especially when the charging costs are time varying.
The participation of renewable, energy storage, and resources with limited fuel inventory in electricity markets has created the need for optimal scheduling and pricing across multiple market intervals for resources with intertemporal constraints. In this paper, a new multi-period market model is proposed to enhance the efficiency of markets with such type of resources. It is also the first market design that links a forward market and a spot market through the coordination of schedule and price under the multi-period paradigm, achieving reliability, economic efficiency and dispatch-following incentives simultaneously. The forward market solves a multi-period model with a long look-ahead time horizon whereas the spot market solves a series of multi-period dispatch and pricing problems with a shorter look-ahead time horizon on a rolling basis. By using the forward schedules and opportunity costs of intertemporal constraints as a guideline, the spot market model is able to produce economically efficient dispatch solutions as well as prices that incentivize dispatch following under the perfect forecast condition. The proposed scheme is applied to the dispatch and pricing of energy storage resources. Numerical experiments show that the proposed scheme outperforms the traditional myopic method in terms of economic efficiency, dispatch following and reliability.
129 - Zhao Yuan , Mario Paolone 2019
We derive the branch ampacity constraint associated to power losses for the convex optimal power flow (OPF) model based on the branch flow formulation. The branch ampacity constraint derivation is motivated by the physical interpretation of the trans mission line {Pi}-model and practical engineering considerations. We rigorously prove and derive: (i) the loop constraint of voltage phase angle, required to make the branch flow model valid for meshed power networks, is a relaxation of the original nonconvex alternating current optimal power flow (o-ACOPF) model; (ii) the necessary conditions to recover a feasible solution of the o-ACOPF model from the optimal solution of the convex second-order cone ACOPF (SOC-ACOPF) model; (iii) the expression of the global optimal solution of the o-ACOPF model providing that the relaxation of the SOC-ACOPF model is tight; (iv) the (parametric) optimal value function of the o-ACOPF or SOC-ACOPF model is monotonic with regarding to the power loads if the objective function is monotonic with regarding to the nodal power generations; (v) tight solutions of the SOC-ACOPF model always exist when the power loads are sufficiently large. Numerical experiments using benchmark power networks to validate our findings and to compare with other convex OPF models, are given and discussed.
Optimized Pulse Patterns (OPPs) are gaining increasing popularity in the power electronics community over the well-studied pulse width modulation due to their inherent ability to provide the switching instances that optimize current harmonic distorti ons. In particular, the OPP problem minimizes current harmonic distortions under a cardinality constraint on the number of switching instances per fundamental wave period. The OPP problem is, however, non-convex involving both polynomials and trigonometric functions. In the existing literature, the OPP problem is solved using off-the-shelf solvers with local convergence guarantees. To obtain guarantees of global optimality, we employ and extend techniques from polynomial optimization literature and provide a solution with a global convergence guarantee. Specifically, we propose a polynomial approximation to the OPP problem to then utilize well-studied globally convergent convex relaxation hierarchies, namely, semi-definite programming and relative entropy relaxations. The resulting hierarchy is proven to converge to the global optimal solution. Our method exhibits a strong performance for OPP problems up to 50 switching instances per quarter wave.
82 - Zhao Yuan 2021
Optimal power flow (OPF) is the fundamental mathematical model in power system operations. Improving the solution quality of OPF provide huge economic and engineering benefits. The convex reformulation of the original nonconvex alternating current OP F (ACOPF) model gives an efficient way to find the global optimal solution of ACOPF but suffers from the relaxation gaps. The existence of relaxation gaps hinders the practical application of convex OPF due to the AC-infeasibility problem. We evaluate and improve the tightness of the convex ACOPF model in this paper. Various power networks and nodal loads are considered in the evaluation. A unified evaluation framework is implemented in Julia programming language. This evaluation shows the sensitivity of the relaxation gap and helps to benchmark the proposed tightness reinforcement approach (TRA). The proposed TRA is based on the penalty function method which penalizes the power loss relaxation in the objective function of the convex ACOPF model. A heuristic penalty algorithm is proposed to find the proper penalty parameter of the TRA. Numerical results show relaxation gaps exist in test cases especially for large-scale power networks under low nodal power loads. TRA is effective to reduce the relaxation gap of the convex ACOPF model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا