ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential Deliberation for Social Choice

76   0   0.0 ( 0 )
 نشر من قبل Brandon Fain
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In large scale collective decision making, social choice is a normative study of how one ought to design a protocol for reaching consensus. However, in instances where the underlying decision space is too large or complex for ordinal voting, standard voting methods of social choice may be impractical. How then can we design a mechanism - preferably decentralized, simple, scalable, and not requiring any special knowledge of the decision space - to reach consensus? We propose sequential deliberation as a natural solution to this problem. In this iterative method, successive pairs of agents bargain over the decision space using the previous decision as a disagreement alternative. We describe the general method and analyze the quality of its outcome when the space of preferences define a median graph. We show that sequential deliberation finds a 1.208- approximation to the optimal social cost on such graphs, coming very close to this value with only a small constant number of agents sampled from the population. We also show lower bounds on simpler classes of mechanisms to justify our design choices. We further show that sequential deliberation is ex-post Pareto efficient and has truthful reporting as an equilibrium of the induced extensive form game. We finally show that for general metric spaces, the second moment of of the distribution of social cost of the outcomes produced by sequential deliberation is also bounded.



قيم البحث

اقرأ أيضاً

We consider a dynamical approach to sequential games. By restricting the convertibility relation over strategy profiles, we obtain a semi-potential (in the sense of Kukushkin), and we show that in finite games the corresponding restriction of better- response dynamics will converge to a Nash equilibrium in quadratic time. Convergence happens on a per-player basis, and even in the presence of players with cyclic preferences, the players with acyclic preferences will stabilize. Thus, we obtain a candidate notion for rationality in the presence of irrational agents. Moreover, the restriction of convertibility can be justified by a conservative updating of beliefs about the other players strategies. For infinite sequential games we can retain convergence to a Nash equilibrium (in some sense), if the preferences are given by continuous payoff functions; or obtain a transfinite convergence if the outcome sets of the game are Delta^0_2 sets.
Without monetary payments, the Gibbard-Satterthwaite theorem proves that under mild requirements all truthful social choice mechanisms must be dictatorships. When payments are allowed, the Vickrey-Clarke-Groves (VCG) mechanism implements the value-ma ximizing choice, and has many other good properties: it is strategy-proof, onto, deterministic, individually rational, and does not make positive transfers to the agents. By Roberts theorem, with three or more alternatives, the weighted VCG mechanisms are essentially unique for domains with quasi-linear utilities. The goal of this paper is to characterize domains of non-quasi-linear utilities where reasonable mechanisms (with VCG-like properties) exist. Our main result is a tight characterization of the maximal non quasi-linear utility domain, which we call the largest parallel domain. We extend Roberts theorem to parallel domains, and use the generalized theorem to prove two impossibility results. First, any reasonable mechanism must be dictatorial when the utility domain is quasi-linear together with any single non-parallel type. Second, for richer utility domains that still differ very slightly from quasi-linearity, every strategy-proof, onto and deterministic mechanism must be a dictatorship.
One way of evaluating social choice (voting) rules is through a utilitarian distortion framework. In this model, we assume that agents submit full rankings over the alternatives, and these rankings are generated from underlying, but unknown, quantita tive costs. The emph{distortion} of a social choice rule is then the ratio of the total social cost of the chosen alternative to the optimal social cost of any alternative; since the true costs are unknown, we consider the worst-case distortion over all possible underlying costs. Analogously, we can consider the worst-case emph{fairness ratio} of a social choice rule by comparing a useful notion of fairness (based on approximate majorization) for the chosen alternative to that of the optimal alternative. With an additional metric assumption -- that the costs equal the agent-alternative distances in some metric space -- it is known that the Copeland rule achieves both a distortion and fairness ratio of at most 5. For other rules, only bounds on the distortion are known, e.g., the popular Single Transferable Vote (STV) rule has distortion $O(log m)$, where $m$ is the number of alternatives. We prove that the distinct notions of distortion and fairness ratio are in fact closely linked -- within an additive factor of 2 for any voting rule -- and thus STV also achieves an $O(log m)$ fairness ratio. We further extend the notions of distortion and fairness ratio to social choice rules choosing a emph{set} of alternatives. By relating the distortion of single-winner rules to multiple-winner rules, we establish that Recursive Copeland achieves a distortion of 5 and a fairness ratio of at most 7 for choosing a set of alternatives.
We study social choice mechanisms in an implicit utilitarian framework with a metric constraint, where the goal is to minimize textit{Distortion}, the worst case social cost of an ordinal mechanism relative to underlying cardinal utilities. We consid er two additional desiderata: Constant sample complexity and Squared Distortion. Constant sample complexity means that the mechanism (potentially randomized) only uses a constant number of ordinal queries regardless of the number of voters and alternatives. Squared Distortion is a measure of variance of the Distortion of a randomized mechanism. Our primary contribution is the first social choice mechanism with constant sample complexity textit{and} constant Squared Distortion (which also implies constant Distortion). We call the mechanism Random Referee, because it uses a random agent to compare two alternatives that are the favorites of two other random agents. We prove that the use of a comparison query is necessary: no mechanism that only elicits the top-k preferred alternatives of voters (for constant k) can have Squared Distortion that is sublinear in the number of alternatives. We also prove that unlike any top-k only mechanism, the Distortion of Random Referee meaningfully improves on benign metric spaces, using the Euclidean plane as a canonical example. Finally, among top-1 only mechanisms, we introduce Random Oligarchy. The mechanism asks just 3 queries and is essentially optimal among the class of such mechanisms with respect to Distortion. In summary, we demonstrate the surprising power of constant sample complexity mechanisms generally, and just three random voters in particular, to provide some of the best known results in the implicit utilitarian framework.
143 - Xiaowei Wu , Bo Li , Jiarui Gan 2020
The Nash social welfare (NSW) is a well-known social welfare measurement that balances individual utilities and the overall efficiency. In the context of fair allocation of indivisible goods, it has been shown by Caragiannis et al. (EC 2016 and TEAC 2019) that an allocation maximizing the NSW is envy-free up to one good (EF1). In this paper, we are interested in the fairness of the NSW in a budget-feasible allocation problem, in which each item has a cost that will be incurred to the agent it is allocated to, and each agent has a budget constraint on the total cost of items she receives. We show that a budget-feasible allocation that maximizes the NSW achieves a 1/4-approximation of EF1 and the approximation ratio is tight. The approximation ratio improves gracefully when the items have small costs compared with the agents budgets; it converges to 1/2 when the budget-cost ratio approaches infinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا