ﻻ يوجد ملخص باللغة العربية
The Nash social welfare (NSW) is a well-known social welfare measurement that balances individual utilities and the overall efficiency. In the context of fair allocation of indivisible goods, it has been shown by Caragiannis et al. (EC 2016 and TEAC 2019) that an allocation maximizing the NSW is envy-free up to one good (EF1). In this paper, we are interested in the fairness of the NSW in a budget-feasible allocation problem, in which each item has a cost that will be incurred to the agent it is allocated to, and each agent has a budget constraint on the total cost of items she receives. We show that a budget-feasible allocation that maximizes the NSW achieves a 1/4-approximation of EF1 and the approximation ratio is tight. The approximation ratio improves gracefully when the items have small costs compared with the agents budgets; it converges to 1/2 when the budget-cost ratio approaches infinity.
In the budget-feasible allocation problem, a set of items with varied sizes and values are to be allocated to a group of agents. Each agent has a budget constraint on the total size of items she can receive. The goal is to compute a feasible allocati
Incentive compatibility (IC) is one of the most fundamental properties of an auction mechanism, including those used for online advertising. Recent methods by Feng et al. and Lahaie et al. show that counterfactual runs of the auction mechanism with d
We consider the problem of approximating maximum Nash social welfare (NSW) while allocating a set of indivisible items to $n$ agents. The NSW is a popular objective that provides a balanced tradeoff between the often conflicting requirements of fairn
We consider the problem of allocating a set of divisible goods to $N$ agents in an online manner, aiming to maximize the Nash social welfare, a widely studied objective which provides a balance between fairness and efficiency. The goods arrive in a s
We study a participatory budgeting problem of aggregating the preferences of agents and dividing a budget over the projects. A budget division solution is a probability distribution over the projects. The main purpose of our study concerns the compar