ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic and magnetic properties of dopant atoms in SnSe monolayer: a first-principles study

131   0   0.0 ( 0 )
 نشر من قبل Weiyang Yu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SnSe monolayer with orthorhombic Pnma GeS structure is an important two-dimensional (2D) indirect band gap material at room temperature. Based on first-principles density functional theory calculations, we present systematic studies on the electronic and magnetic properties of X (X = Ga, In, As, Sb) atoms doped SnSe monolayer. The calculated electronic structures show that Ga-doped system maintains semiconducting property while In-doped SnSe monolayer is half-metal. The As- and Sb- doped SnSe systems present the characteristics of n-type semiconductor. Moreover, all considered substitutional doping cases induce magnetic ground states with the magnetic moment of 1{mu}B. In addition, the calculated formation energies also show that four types of doped systems are thermodynamic stable. These results provide a new route for the potential applications of doped SnSe monolayer in 2D photoelectronic and magnetic semiconductor devices.



قيم البحث

اقرأ أيضاً

113 - Zewen Wu , Jin Yu , Shengjun Yuan 2019
Two-dimensional CrI3 has attracted much attention as it is reported to be a ferromagnetic semiconductor with the Curie temperature around 45K. By performing first-principles calculations, we find that the magnetic ground state of CrI3 is variable und er biaxial strain. Our theoretical investigations show that the ground state of monolayer CrI3 is ferromagnetic under compression, but becomes antiferromagnetic under tension. Particularly, the transition occurs under a feasible in-plane strain around 1.8%. Accompanied by the transition of the magnetic ground state, it undergoes a transition from magnetic-metal to half-metal to half-semiconductor to spin-relevant semiconductor when strain varies from -15% to 10%. We attribute these transitions to the variation of the d-orbitals of Cr atoms and the p-orbitals of I atoms. Generally, we report a series of magnetic and electronic phase transition in strained CrI3, which will help both theoretical and experimental researchers for further understanding of the tunable electronic and magnetic properties of CrI3 and their analogous.
Lithium metasilicate (Li2SiO3) has attracted considerable interest as a promising electrolyte material for potential use in lithium batteries. However, its electronic properties are still not thoroughly understood. In this work, density functional th eory calculations were adopted, our calculations find out that Li2SiO3 exhibits unique lattice symmetry (orthorhombic crystal), valence and conduction bands, charge density distribution, and van Hove singularities. Delicate analyses, the critical multi-orbital hybridizations in Li-O and Si-O bonds 2s- (2s, 2px, 2py, 2pz) and (3s, 3px, 3py, 3pz)- (2s, 2px, 2py, 2pz), respectively was identified. In particular, this system shows a huge indirect-gap of 5.077 eV. Therefore, there exist many strong covalent bonds, with obvious anisotropy and non-uniformity. On the other hand, the spin-dependent magnetic configurations are thoroughly absent. The theoretical framework could be generalized to explore the essential properties of cathode and anode materials of oxide compounds.
Structural, electronic, vibrational and dielectric properties of LaBGeO$_5$ with the stillwellite structure are determined based on textit{ab initio} density functional theory. The theoretically relaxed structure is found to agree well with the exist ing experimental data with a deviation of less than $0.2%$. Both the density of states and the electronic band structure are calculated, showing five distinct groups of valence bands. Furthermore, the Born effective charge, the dielectric permittivity tensors, and the vibrational frequencies at the center of the Brillouin zone are all obtained. Compared to existing model calculations, the vibrational frequencies are found in much better agreement with the published experimental infrared and Raman data, with absolute and relative rms values of 6.04 cm$^{-1}$, and $1.81%$, respectively. Consequently, numerical values for both the parallel and perpendicular components of the permittivity tensor are established as 3.55 and 3.71 (10.34 and 12.28), respectively, for the high-(low-)frequency limit.
Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies us ing density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp$^3$-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the $d$ states of the metal atom and the defect levels associated with an unreconstructed D$_{3h}$ carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 $mu_B$ is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.
We present a theoretical study using density functional calculations of the structural, electronic and magnetic properties of 3d transition metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene. We pay special attention to the electronic and magnetic properties of these substitutional impurities and found that they can be fully understood using a simple model based on the hybridization between the states of the metal atom, particularly the d shell, and the defect levels associated with an unreconstructed D3h carbon vacancy. We identify three different regimes associated with the occupation of different carbon-metal hybridized electronic levels: (i) bonding states are completely filled for Sc and Ti, and these impurities are non-magnetic; (ii) the non-bonding d shell is partially occupied for V, Cr and Mn and, correspondingly, these impurties present large and localized spin moments; (iii) antibonding states with increasing carbon character are progressively filled for Co, Ni, the noble metals and Zn. The spin moments of these impurities oscillate between 0 and 1 Bohr magnetons and are increasingly delocalized. The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct position at the border between regimes (ii) and (iii) and shows a more complex behavior: while is non-magnetic at the level of GGA calculations, its spin moment can be switched on using GGA+U calculations with moderate values of the U parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا