ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing Excited State Energy Gaps with Time-Dependent Density Functional Theory on Ru(II) Complexes

172   0   0.0 ( 0 )
 نشر من قبل Andrew John Atkins
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrew J. Atkins




اسأل ChatGPT حول البحث

A set of density functionals coming from different rungs on Jacobs ladder are employed to evaluate the electronic excited states of three Ru(II) complexes. While most studies on the performance of density functionals compare the vertical excitation energies, in this work we focus on the energy gaps between the electronic excited states, of the same and different multiplicity. Excited state energy gaps are important for example to determine radiationless transition probabilities. Besides energies, a functional should deliver the correct state character and state ordering. Therefore, wavefunction overlaps are introduced to systematically evaluate the effect of different functionals on the character of the excited states. As a reference, the energies and state characters from multi-state second-order perturbation theory complete active space (MS-CASPT2) are used. In comparison to MS-CASPT2, it is found that while hybrid functionals provide better vertical excitation energies, pure functionals typically give more accurate excited state energy gaps. Pure functionals are also found to reproduce the state character and ordering in closer agreement to MS-CASPT2 than the hybrid functionals.



قيم البحث

اقرأ أيضاً

The computational investigation of photochemical processes often entails the calculation of excited state geometries, energies, and energy gradients. The nuclear-electronic orbital (NEO) approach treats specified nuclei, typically protons, quantum me chanically on the same level as the electrons, thereby including the associated nuclear quantum effects and non-Born-Oppenheimer behavior into quantum chemistry calculations. The multicomponent density functional theory (NEO-DFT) and time-dependent DFT (NEO-TDDFT) methods allow efficient calculations of ground and excited states, respectively. Herein, the analytical gradients are derived and implemented for the NEO-TDDFT method and the associated Tamm-Dancoff approximation (NEO-TDA). The programmable equations for these analytical gradients, as well as the NEO-DFT analytical Hessian, are provided. The NEO approach includes the anharmonic zero-point energy and density delocalization associated with the quantum protons, as well as vibronic mixing, in geometry optimizations and energy calculations of ground and excited states. The harmonic zero-point energy associated with the other nuclei can be computed via the NEO Hessian. This approach is used to compute the 0-0 adiabatic excitation energies for a set of nine small molecules with all protons quantized, exhibiting slight improvement over the conventional electronic approach. Geometry optimizations of two excited state intramolecular proton transfer systems are performed with one and two quantized protons, respectively. The NEO calculations for these systems produce electronically excited state geometries with stronger intramolecular hydrogen bonds and similar relative stabilities compared to conventional electronic methods. This work provides the foundation for nonadiabatic dynamics simulations of fundamental processes such as photoinduced proton transfer and proton-coupled electron transfer.
Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbi tal program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine.
First-order nonadiabatic coupling matrix elements (fo-NACMEs) are the basic quantities in theoretical descriptions of electronically nonadiabatic processes that are ubiquitous in molecular physics and chemistry. Given the large size of systems of che mical interests, time-dependent density functional theory (TDDFT) is usually the first choice. However, the lack of wave functions in TDDFT renders the formulation of NAC-TDDFT for fo-NACMEs conceptually difficult. The present account aims to analyze the available variants of NAC-TDDFT in a critical but concise manner and meanwhile point out the proper ways for implementation. It can be concluded, from both theoretical and numerical points of view, that the equation of motion-based variant of NAC-TDDFT is the right choice. Possible future developments of this variant are also highlighted.
Density functional theory (DFT) provides a theoretical framework for efficient and fairly accurate calculations of the electronic structure of molecules and crystals. The main features of density functional theory are described and DFT methods are co mpared with wavefunction-based methods like the Hartree-Fock approach. Some recent applications of DFT to spin crossover complexes are reviewed, e.g., the calculation of Mossbauer parameters, of vibrational modes and of differences of entropy, vibrational energy, and total electronic energy between high-spin and low-spin isomers.
We present a kinetic-energy density-functional theory and the corresponding kinetic-energy Kohn-Sham (keKS) scheme on a lattice and show that by including more observables explicitly in a density-functional approach already simple approximation strat egies lead to very accurate results. Here we promote the kinetic-energy density to a fundamental variable along side the density and show for specific cases (analytically and numerically) that there is a one-to-one correspondence between the external pair of on-site potential and site-dependent hopping and the internal pair of density and kinetic-energy density. Based on this mapping we establish two unknown effective fields, the mean-field exchange-correlation potential and the mean-field exchange-correlation hopping, that force the keKS system to generate the same kinetic-energy density and density as the fully interacting one. We show, by a decomposition based on the equations of motions for the density and the kinetic-energy density, that we can construct simple orbital-dependent functionals that outperform the corresponding exact-exchange Kohn-Sham (KS) approximation of standard density-functional theory. We do so by considering the exact KS and keKS systems and compare the unknown correlation contributions as well as by comparing self-consistent calculations based on the mean-field exchange for the keKS and the exact-exchange for the KS system, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا