ترغب بنشر مسار تعليمي؟ اضغط هنا

Density Functional Theory Calculations for Spin Crossover Complexes

247   0   0.0 ( 0 )
 نشر من قبل Hauke Paulsen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Density functional theory (DFT) provides a theoretical framework for efficient and fairly accurate calculations of the electronic structure of molecules and crystals. The main features of density functional theory are described and DFT methods are compared with wavefunction-based methods like the Hartree-Fock approach. Some recent applications of DFT to spin crossover complexes are reviewed, e.g., the calculation of Mossbauer parameters, of vibrational modes and of differences of entropy, vibrational energy, and total electronic energy between high-spin and low-spin isomers.

قيم البحث

اقرأ أيضاً

Iron complexes with a suitable ligand field undergo spin-crossover (SCO), which can be induced reversibly by temperature, pressure or even light. Therefore, these compounds are highly interesting candidates for optical information storage, for displa y devices and pressure sensors. The SCO phenomenon can be conveniently studied by spectroscopic techniques like Raman and infrared spectroscopy as well as nuclear inelastic scattering, a technique which makes use of the Mossbauer effect. This review covers new developments which have evolved during the last years like, e.g. picosecond infrared spectroscopy and thin film studies but also gives an overviewon newtechniques for the theoretical calculation of spin transition phenomena and vibrational spectroscopic data of SCO complexes.
Standard flavors of density-functional theory (DFT) calculations are known to fail in describing anions, due to large self-interaction errors. The problem may be circumvented by using localized basis sets of reduced size, leaving no variational flexi bility for the extra electron to delocalize. Alternatively, a recent approach exploiting DFT evaluations of total energies on electronic densities optimized at the Hartree-Fock (HF) level has been reported, showing that the self-interaction-free HF densities are able to lead to an improved description of the additional electron, returning affinities in close agreement with the experiments. Nonetheless, such an approach can fail when the HF densities are too inaccurate. Here, an alternative approach is presented, in which an embedding environment is used to stabilize the anion in a bound configuration. Similarly to the HF case, when computing total energies at the DFT level on these corrected densities, electron affinities in very good agreement with experiments can be recovered. The effect of the environment can be evaluated and removed by an extrapolation of the results to the limit of vanishing embedding. Moreover, the approach can be easily applied to DFT calculations with delocalized basis sets, e.g. plane-waves, for which alternative approaches are either not viable or more computationally demanding. The proposed extrapolation strategy can be thus applied also to extended systems, as often studied in condensed-matter physics and materials science, and we illustrate how the embedding environment can be exploited to determine the energy of an adsorbing anion - here a chloride ion on a metal surface - whose charge configuration would be incorrectly predicted by standard density functionals.
Density functional methods have been applied to calculate the quadrupole splitting of a series of iron(II) spin crossover complexes. Experimental and calculated values are in reasonable agreement. In one case spin-orbit coupling is necessary to expla in the very small quadrupole splitting value of 0.77 mm/s at 293 K for a high-spin isomer.
We present a time-dependent density functional theory (TDDFT) based approach to compute the light-matter couplings between two different manifolds of excited states relative to a common ground state. These quantities are the necessary ingredients to solve the Kramers--Heisenberg equation for resonant inelastic X-ray scattering (RIXS) and several other types of two-photon spectroscopies. The procedure is based on the pseudo-wavefunction approach, where TDDFT eigenstates are treated as a configuration interaction wavefunction with single excitations, and on the restricted energy window approach, where a manifold of excited states can be rigorously defined based on the energies of the occupied molecular orbitals involved in the excitation process. We illustrate the applicability of the method by calculating the 2p4d RIXS maps of three representative Ruthenium complexes and comparing them to experimental results. The method is able to accurately capture all the experimental features in all three complexes, with relative energies correct to within 0.6 eV at the cost of two independent TDDFT calculations.
171 - Andrew J. Atkins 2017
A set of density functionals coming from different rungs on Jacobs ladder are employed to evaluate the electronic excited states of three Ru(II) complexes. While most studies on the performance of density functionals compare the vertical excitation e nergies, in this work we focus on the energy gaps between the electronic excited states, of the same and different multiplicity. Excited state energy gaps are important for example to determine radiationless transition probabilities. Besides energies, a functional should deliver the correct state character and state ordering. Therefore, wavefunction overlaps are introduced to systematically evaluate the effect of different functionals on the character of the excited states. As a reference, the energies and state characters from multi-state second-order perturbation theory complete active space (MS-CASPT2) are used. In comparison to MS-CASPT2, it is found that while hybrid functionals provide better vertical excitation energies, pure functionals typically give more accurate excited state energy gaps. Pure functionals are also found to reproduce the state character and ordering in closer agreement to MS-CASPT2 than the hybrid functionals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا