ترغب بنشر مسار تعليمي؟ اضغط هنا

The spt-Function of Andrews

56   0   0.0 ( 0 )
 نشر من قبل William Y. C. Chen
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف William Y.C. Chen




اسأل ChatGPT حول البحث

The spt-function spt($n$) was introduced by Andrews as the weighted counting of partitions of $n$ with respect to the number of occurrences of the smallest part. In this survey, we summarize recent developments in the study of spt($n$), including congruence properties established by Andrews, Bringmann, Folsom, Garvan, Lovejoy and Ono et al., a constructive proof of the Andrews-Dyson-Rhoades conjecture given by Chen, Ji and Zang, generalizations and variations of the spt-function. We also give an overview of asymptotic formulas of spt($n$) obtained by Ahlgren, Andersen and Rhoades et al. We conclude with some conjectures on inequalities on spt($n$), which are reminiscent of those on $p(n)$ due to DeSalvo and Pak, and Bessenrodt and Ono. Furthermore, we observe that, beyond the log-concavity, $p(n)$ and spt($n$) satisfy higher order inequalities based on polynomials arising in the invariant theory of binary forms. In particular, we conjecture that the higher order Tur{a}n inequality $4(a_n^2-a_{n-1}a_{n+1})(a_{n+1}^2-a_{n}a_{n+2})-(a_na_{n+1}-a_{n-1}a_{n+2})^2>0$ holds for $p(n)$ when $ngeq 95$ and for spt($n$) when $ngeq 108$.

قيم البحث

اقرأ أيضاً

In this paper, we establish an asymptotic formula with an effective bound on the error term for the Andrews smallest parts function $mathrm{spt}(n)$. We use this formula to prove recent conjectures of Chen concerning inequalities which involve the pa rtition function $p(n)$ and $mathrm{spt}(n)$. Further, we strengthen one of the conjectures, and prove that for every $epsilon>0$ there is an effectively computable constant $N(epsilon) > 0$ such that for all $ngeq N(epsilon)$, we have begin{equation*} frac{sqrt{6}}{pi}sqrt{n},p(n)<mathrm{spt}(n)<left(frac{sqrt{6}}{pi}+epsilonright) sqrt{n},p(n). end{equation*} Due to the conditional convergence of the Rademacher-type formula for $mathrm{spt}(n)$, we must employ methods which are completely different from those used by Lehmer to give effective error bounds for $p(n)$. Instead, our approach relies on the fact that $p(n)$ and $mathrm{spt}(n)$ can be expressed as traces of singular moduli.
The Tur{a}n inequalities and the higher order Tur{a}n inequalities arise in the study of Maclaurin coefficients of an entire function in the Laguerre-P{o}lya class. A real sequence ${a_{n}}$ is said to satisfy the Tur{a}n inequalities if for $ngeq 1$ , $a_n^2-a_{n-1}a_{n+1}geq 0$. It is said to satisfy the higher order Tur{a}n inequalities if for $ngeq 1$, $4(a_{n}^2-a_{n-1}a_{n+1})(a_{n+1}^2-a_{n}a_{n+2})-(a_{n}a_{n+1}-a_{n-1}a_{n+2})^2geq 0$. A sequence satisfying the Turan inequalities is also called log-concave. For the partition function $p(n)$, DeSalvo and Pak showed that for $n>25$, the sequence ${ p(n)}_{n> 25}$ is log-concave, that is, $p(n)^2-p(n-1)p(n+1)>0$ for $n> 25$. It was conjectured by Chen that $p(n)$ satisfies the higher order Tur{a}n inequalities for $ngeq 95$. In this paper, we prove this conjecture by using the Hardy-Ramanujan-Rademacher formula to derive an upper bound and a lower bound for $p(n+1)p(n-1)/p(n)^2$. Consequently, for $ngeq 95$, the Jensen polynomials $g_{3,n-1}(x)=p(n-1)+3p(n)x+3p(n+1)x^2+p(n+2)x^3$ have only real zeros. We conjecture that for any positive integer $mgeq 4$ there exists an integer $N(m)$ such that for $ngeq N(m) $, the polynomials $sum_{k=0}^m {mchoose k}p(n+k)x^k$ have only real zeros. This conjecture was independently posed by Ono.
153 - Jin Wang , Xinrong Ma 2017
In this paper we set up a bivariate representation of partial theta functions which not only unifies some famous identities for partial theta functions due to Andrews and Warnaar, et al. but also unveils a new characteristic of such identities. As fu rther applications, we establish a general form of Warnaars identity and a general $q$--series transformation associated with Bailey pairs via the use of the power series expansion of partial theta functions.
We present an infinite family of Borwein type $+ - - $ conjectures. The expressions in the conjecture are related to multiple basic hypergeometric series with Macdonald polynomial argument.
In order to provide a unified combinatorial interpretation of congruences modulo $5$ for 2-colored partition functions, Garvan introduced a bicrank statistic in terms of weighted vector partitions. In this paper, we obtain some inequalities between t he bicrank counts $M^{*}(r,m,n)$ for $m=2$, $3$ and $4$ via their asymptotic formulas and some $q$-series techniques. These inequalities are parallel to Andrews and Lewis results on the rank and crank counts for ordinary partitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا