ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of the diamond active target prototype for the PADME experiment at the DA$Phi$NE BTF

119   0   0.0 ( 0 )
 نشر من قبل Gabriele Chiodini PhD
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The PADME experiment at the DA$Phi$NE Beam-Test Facility (BTF) is designed to search for the gauge boson of a new $rm U(1)$ interaction in the process e$^+$e$^-rightarrowgamma$+$rm A$, using the intense positron beam hitting a light target. The $rm A$, usually referred as dark photon, is assumed to decay into invisible particles of a secluded sector and it can be observed by searching for an anomalous peak in the spectrum of the missing mass measured in events with a single photon in the final state. The measurement requires the determination of the 4-momentum of the recoil photon, performed by a homogeneous, highly segmented BGO crystals calorimeter. A significant improvement of the missing mass resolution is possible using an active target capable to determine the average position of the positron bunch with a resolution of less than 1 mm. This report presents the performance of a real size $rm (2x2 cm^2)$ PADME active target made of a thin (50 $mu$m) diamond sensor, with graphitic strips produced via laser irradiation on both sides. The measurements are based on data collected in a beam test at the BTF in November 2015.

قيم البحث

اقرأ أيضاً

The PADME experiment at the DA$Phi$NE Beam-Test Facility (BTF) aims at searching for invisible decays of the dark photon by measuring the final state missing mass in the process $e^+e^- to gamma+ A$, with $A$ undetected. The measurement requires the determination of the 4-momentum of the recoil photon, performed using a homogeneous, highly segmented BGO crystals calorimeter. We report the results of the test of a 5$times$5 crystals prototype performed with an electron beam at the BTF in July 2016.
The measurement of $BR(K^+topi^+ ubar{ u})$ with 10% precision by the NA62 experiment requires extreme background suppression. The Small Angle Calorimeter aims to provide an efficient veto for photons flying at angles down to zero with respect to the kaon flight direction. The initial prototype was upgraded and tested at the Beam Test Facility of the DA$Phi$NE Linac at Frascati. The energy resolution and the efficiency were measured and are presented.
62 - G. Piperno 2016
The PADME experiment will search for the invisible decay of Dark Photons produced in interactions of positron from the DA$Phi$NE Linac on a target. The collaboration aims at reaching a sensitivity of $sim10^{-3}$ on the coupling constant for values of Dark Photon masses up to $23.7,mbox{MeV}$.
71 - Y. Abreu , Y. Amhis , L. Arnold 2018
The SoLid collaboration has developed a new detector technology to detect electron anti-neutrinos at close proximity to the Belgian BR2 reactor at surface level. A 288$,$kg prototype detector was deployed in 2015 and collected data during the operati onal period of the reactor and during reactor shut-down. Dedicated calibration campaigns were also performed with gamma and neutron sources. This paper describes the construction of the prototype detector with a high control on its proton content and the stability of its operation over a period of several months after deployment at the BR2 reactor site. All detector cells provide sufficient light yields to achieve a target energy resolution of better than 20%/$sqrt{E(MeV)}$. The capability of the detector to track muons is exploited to equalize the light response of a large number of channels to a precision of 3% and to demonstrate the stability of the energy scale over time. Particle identification based on pulse-shape discrimination is demonstrated with calibration sources. Despite a lower neutron detection efficiency due to triggering constraints, the main backgrounds at the reactor site were determined and taken into account in the shielding strategy for the main experiment. The results obtained with this prototype proved essential in the design optimization of the final detector. This paper is dedicated to our SCK$cdot$CEN colleague, Edgar Koonen, who passed away unexpectedly in 2017. Edgar was part of the SoLid collaboration since its inception and his efforts were vital to get the experiment started. He will be duly missed.
Investigation at a $phi$--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) th e sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta$^prime$ mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the $e^+ e^-$ physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا