ﻻ يوجد ملخص باللغة العربية
Orthogonal matrix has shown advantages in training Recurrent Neural Networks (RNNs), but such matrix is limited to be square for the hidden-to-hidden transformation in RNNs. In this paper, we generalize such square orthogonal matrix to orthogonal rectangular matrix and formulating this problem in feed-forward Neural Networks (FNNs) as Optimization over Multiple Dependent Stiefel Manifolds (OMDSM). We show that the rectangular orthogonal matrix can stabilize the distribution of network activations and regularize FNNs. We also propose a novel orthogonal weight normalization method to solve OMDSM. Particularly, it constructs orthogonal transformation over proxy parameters to ensure the weight matrix is orthogonal and back-propagates gradient information through the transformation during training. To guarantee stability, we minimize the distortions between proxy parameters and canonical weights over all tractable orthogonal transformations. In addition, we design an orthogonal linear module (OLM) to learn orthogonal filter banks in practice, which can be used as an alternative to standard linear module. Extensive experiments demonstrate that by simply substituting OLM for standard linear module without revising any experimental protocols, our method largely improves the performance of the state-of-the-art networks, including Inception and residual networks on CIFAR and ImageNet datasets. In particular, we have reduced the test error of wide residual network on CIFAR-100 from 20.04% to 18.61% with such simple substitution. Our code is available online for result reproduction.
We introduce an efficient approach for optimization over orthogonal groups on highly parallel computation units such as GPUs or TPUs. As in earlier work, we parametrize an orthogonal matrix as a product of Householder reflections. However, to overcom
We propose a unified framework for neural net normalization, regularization and optimization, which includes Path-SGD and Batch-Normalization and interpolates between them across two different dimensions. Through this framework we investigate issue o
Deep neural networks (DNNs) although achieving human-level performance in many domains, have very large model size that hinders their broader applications on edge computing devices. Extensive research work have been conducted on DNN model compression
In domains such as health care and finance, shortage of labeled data and computational resources is a critical issue while developing machine learning algorithms. To address the issue of labeled data scarcity in training and deployment of neural netw
This paper presents a general framework for norm-based capacity control for $L_{p,q}$ weight normalized deep neural networks. We establish the upper bound on the Rademacher complexities of this family. With an $L_{p,q}$ normalization where $qle p^*$,