ﻻ يوجد ملخص باللغة العربية
We study the effect of many-body quantum interference on the dynamics of coupled periodically kicked systems whose classical dynamics is chaotic and shows an unbounded energy increase. We specifically focus on a $N$ coupled kicked rotors model: we find that the interplay of quantumness and interactions dramatically modifies the system dynamics inducing a transition between energy saturation and unbounded energy increase. We discuss this phenomenon both numerically and analytically, through a mapping onto a $N$-dimensional Anderson model. The thermodynamic limit $Ntoinfty$, in particular, always shows unbounded energy growth. This dynamical delocalization is genuinely quantum and very different from the classical one: using a mean field approximation we see that the system self-organizes so that the energy per site increases in time as a power law with exponent smaller than one. This wealth of phenomena is a genuine effect of quantum interference: the classical system for $Ngeq 2$ always behaves ergodically with an energy per site linearly increasing in time. Our results show that quantum mechanics can deeply alter the regularity/ergodicity properties of a many body driven system.
We consider a finite-size periodically driven quantum system of coupled kicked rotors which exhibits two distinct regimes in parameter space: a dynamically-localized one with kinetic-energy saturation in time and a chaotic one with unbounded energy a
The understanding of how classical dynamics can emerge in closed quantum systems is a problem of fundamental importance. Remarkably, while classical behavior usually arises from coupling to thermal fluctuations or random spectral noise, it may also b
We provide evidence that a clean kicked Bose-Hubbard model exhibits a many-body dynamically localized phase. This phase shows ergodicity breaking up to the largest sizes we were able to consider. We argue that this property persists in the limit of l
We map the infinite-range coupled quantum kicked rotors over an infinite-range coupled interacting bosonic model. In this way we can apply exact diagonalization up to quite large system sizes and confirm that the system tends to ergodicity in the lar
Ultracold fermions trapped in a honeycomb optical lattice constitute a versatile setup to experimentally realize the Haldane model [Phys. Rev. Lett. 61, 2015 (1988)]. In this system, a non-uniform synthetic magnetic flux can be engineered through las