ﻻ يوجد ملخص باللغة العربية
The goal of this paper is to propose novel strategies for adaptive learning of signals defined over graphs, which are observed over a (randomly time-varying) subset of vertices. We recast two classical adaptive algorithms in the graph signal processing framework, namely, the least mean squares (LMS) and the recursive least squares (RLS) adaptive estimation strategies. For both methods, a detailed mean-square analysis illustrates the effect of random sampling on the adaptive reconstruction capability and the steady-state performance. Then, several probabilistic sampling strategies are proposed to design the sampling probability at each node in the graph, with the aim of optimizing the tradeoff between steady-state performance, graph sampling rate, and convergence rate of the adaptive algorithms. Finally, a distributed RLS strategy is derived and is shown to be convergent to its centralized counterpart. Numerical simulations carried out over both synthetic and real data illustrate the good performance of the proposed sampling and reconstruction strategies for (possibly distributed) adaptive learning of signals defined over graphs.
We study the combinatorial pure exploration problem Best-Set in stochastic multi-armed bandits. In a Best-Set instance, we are given $n$ arms with unknown reward distributions, as well as a family $mathcal{F}$ of feasible subsets over the arms. Our g
We develop new adaptive algorithms for variational inequalities with monotone operators, which capture many problems of interest, notably convex optimization and convex-concave saddle point problems. Our algorithms automatically adapt to unknown prob
We formulate the problem of sampling and recovering clustered graph signal as a multi-armed bandit (MAB) problem. This formulation lends naturally to learning sampling strategies using the well-known gradient MAB algorithm. In particular, the samplin
We study a structured variant of the multi-armed bandit problem specified by a set of Bernoulli distributions $ u != !( u_{a,b})_{a in mathcal{A}, b in mathcal{B}}$ with means $(mu_{a,b})_{a in mathcal{A}, b in mathcal{B}}!in![0,1]^{mathcal{A}timesm
Most generative models of audio directly generate samples in one of two domains: time or frequency. While sufficient to express any signal, these representations are inefficient, as they do not utilize existing knowledge of how sound is generated and